This week's roundup of Houston innovators includes Michael Torres of CrossBridge Bio, Aileen Allen of Mercury, and Ryan Reisner of SeekerPitch. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes three innovators across therapeutics, venture capital, and HR software.

Michael Torres, CEO of CrossBridge Bio

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and CE-Ventures. Photo via crossbridgebio.com

A Houston biotech company based off research out of UTHealth Houston has raised seed funding to continue developing its cancer-fighting therapeutic.

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and Crescent Enterprises' VC arm, CE-Ventures. The round also included participation from Portal Innovations, Alexandria Venture Investments, Linden Lake Labs, and several pre-seed investors.

“We are thrilled to have the support of such experienced investors who share our vision of bringing transformative cancer therapies to patients in need,” Michael Torres, CEO of CrossBridge Bio, says in a news release. Torres served as an entrepreneur in residence of ACT. Continue reading.

Aileen Allen, venture partner at Mercury

Aileen Allen joined Mercury as venture partner and is on the board of the Houston Angel Network. Photo courtesy of Mercury

When Aileen Allen was contemplating a big career move — swapping sides of the table from tech company to venture investor — she was motivated by driving gender and experience diversity amongst decision makers.

"I've worked for VC-backed companies for most of my career and had the opportunity as an executive to be in the boardroom during that time," she says on the Houston Innovators Podcast. "One of my takeaways was that very few of my board members looked like me. I had one or two women on any of my boards at a time in totality, and very few of my board members had been operators."

"I'd really like to change that, and I'd like there to be better representation and diversification in the boardroom," she adds. Continue reading.

Ryan Reisner, president and founder of SeekerPitch

Ryan Reisner is the\u00a0president and founder of SeekerPitch and The Reisner Group. Photo via LinkedIn

Confident job seekers have mostly been of the mindset that if they can just get in front of an employer, they can sell themselves into an offer for the open position. The obstacle then, is getting through the screening process to get an actual interview.

Until recently, the price of admission for starting or progressing in a desired career was a resume and cover letter stellar enough to catch the eye of the human resources and recruiting team. Outside of being buried in the immense pile of resumes recruiters do not have the bandwidth to get to, standing out in the sea of candidates can be daunting.

Resumes do not tell the full story as it is and it’s almost impossible for applicants to put their potential, soft skills and work personality into a document to be reviewed. So, what’s the solution?

It is a multi-layered problem, which requires a multi-layered solution, but one of the options gaining steam in the recruitment space is provided by SeekerPitch, a Houston-based HR technology platform utilizing generative AI to make hiring and interviewing more efficient.

“I've noticed that there's a ton of people that slip through the cracks,” says Ryan Reisner, president and founder of SeekerPitch and The Reisner Group. “And we spend all our time interviewing people to see if they have the soft skills. Resumes are hard skills. And now with AI, anybody can build the same exact resume. Everybody can say they have communication skills, leadership skills, and a lot of people say they have those." Continue reading.

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and CE-Ventures. Photo via Getty Images

Houston biotech startup secures $10M seed round to propel cancer-fighting therapy from bench to bedside

fresh funding

A Houston biotech company based off research out of UTHealth Houston has raised seed funding to continue developing its cancer-fighting therapeutic.

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and Crescent Enterprises' VC arm, CE-Ventures. The round also included participation from Portal Innovations, Alexandria Venture Investments, Linden Lake Labs, and several pre-seed investors.

“We are thrilled to have the support of such experienced investors who share our vision of bringing transformative cancer therapies to patients in need,” Michael Torres, CEO of CrossBridge Bio, says in a news release. Torres served as an entrepreneur in residence of ACT.

The company is working on the next-generation of antibody-drug conjugates (ADC) therapeutics that process dual payloads as targeted treatments for a set of challenging cancers. The innovative treatment is based on research from UTHealth experts Dr. Kyoji Tsuchikama and Dr. Zhiqiang An.

“Our dual-payload ADC technology is designed to deliver synergistic therapeutic effects using highly stable linkers that ensure payload release only within the targeted cancer cells, thereby maximizing their therapeutic effectiveness while minimizing the liabilities associated with uptake in unintended tissues, as seen with many of today’s cancer treatments," Torres continues.

He explains that the funding will toward advancing CrossBridge's first development candidate, CBB-120, into preclinical non-GLP toxicology studies in addition to derisking the company’s proprietary linker technology with dual-payload applications, per the release.

As a result of the raise, William McKeon, president and CEO of the Texas Medical Center, and Damir Illich, manager of life sciences of CE-Ventures, will join CrossBridge Bio’s board of directors.

“We are proud to back CrossBridge Bio in their mission to develop the next generation of cancer therapies,” McKeon says in the release. “Their dual-payload ADCs are designed to deliver targeted drug release within cancer cells with greater stability, precision, and control. These breakthrough advancements have the potential to change patients’ lives worldwide and we look forward to helping drive their development.”

The Texas Medical Center's ACT program is making sure the most-promising cancer research makes it to its life-saving commercialization stage. Photo via tmc.edu

Houston program buoys promising cancer research with live-saving innovation

act-ing now

How do you bring promising cancer research to the masses? TMC Innovation's Accelerator for Cancer Therapeutics was established with that question in mind.

Funded by a $5 million grant from CPRIT, or the Cancer Prevention and Research Institute of Texas, in 2019 and in collaboration with the Gulf Coast Consortia and the University of Texas Medical Branch, the first cohort began their intensive work in 2021. The deadline to join the next cohort is October 13.

Since its inception, ACT has seen the forming of 19 companies — two of which have been awarded CPRIT seed grants, along with four in contention for one this year — as well as $92 million in dilutive funding and $10 million in non-dilutive funding.

“We’ve recruited investigators and companies from the breadth and width of the state of Texas, so all the way from Lubbock to Galveston from Dallas to the Rio Grande Valley,” Ahmed AlRawi, program manager, tells InnovationMap. “We've had an amazing set of investigators who have gone through the program — 56 teams to be precise.”

AlRawi says that the first pillar of the program is education. To that end, the cohort works with entrepreneurs in residence like Michael Torres. Best known as the co-founder of ReCode Therapeutics, Torres says that one of his greatest passions lies in translating science into medicines. ReCode is a genetic medicines company that is currently clinical-stage. It’s raised more than $300 million in the last two years, certainly something to which scientist-entrepreneurs earlier in their careers would aspire.

A longtime resident of Dallas, Torres moved his family to Houston last year, calling it “the place to be for cancer startups in Texas.”

Initially, says Torres, Houston wasn’t on his radar. But thanks to a call from ACT external advisor Dan Hargrove, Torres realized that the city might be a fit for him and his goals.

“I wanted to find a project that I could help support, sort of take my experience as a cofounder and help guide the next great startup within the ecosystem,” he says.

Torres and AlRawi agree that the biggest successes to come out of ACT so far include March Biosciences, a company from the first cohort, which is focused on developing CAR-T cell strategies to help combat hematological cancers; CPRIT fundee, OmniNano Pharmaceuticals, which uses patented nanotechnology to co-deliver a pair of therapeutical agents to solid tumors; and the latest, CrossBridge Bio.

Part of the most recent cohort, Torres has joined Drs. Kyoji Tsuchikama and Zhiqiang An as the last company’s CEO. To that end, he’s partnered with the world-class researchers out of UT Health Houston to build a next-generation antibody drug conjugate company that he believes will produce “better and safer and more effective drugs than what's currently on the market today.”

All the more reason that Torres he’s glad to have moved to Houston at what he calls “a really exciting time.” He’s thankful for the Texas Medical Center and the relationships it fosters. “We're all sort of aligning on creating a sustainable biotech ecosystem,” he says. And the next big cancer fighting company may well emerge from ACT.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”