This week's roundup of Houston innovators includes Michael Torres of CrossBridge Bio, Aileen Allen of Mercury, and Ryan Reisner of SeekerPitch. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes three innovators across therapeutics, venture capital, and HR software.

Michael Torres, CEO of CrossBridge Bio

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and CE-Ventures. Photo via crossbridgebio.com

A Houston biotech company based off research out of UTHealth Houston has raised seed funding to continue developing its cancer-fighting therapeutic.

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and Crescent Enterprises' VC arm, CE-Ventures. The round also included participation from Portal Innovations, Alexandria Venture Investments, Linden Lake Labs, and several pre-seed investors.

“We are thrilled to have the support of such experienced investors who share our vision of bringing transformative cancer therapies to patients in need,” Michael Torres, CEO of CrossBridge Bio, says in a news release. Torres served as an entrepreneur in residence of ACT. Continue reading.

Aileen Allen, venture partner at Mercury

Aileen Allen joined Mercury as venture partner and is on the board of the Houston Angel Network. Photo courtesy of Mercury

When Aileen Allen was contemplating a big career move — swapping sides of the table from tech company to venture investor — she was motivated by driving gender and experience diversity amongst decision makers.

"I've worked for VC-backed companies for most of my career and had the opportunity as an executive to be in the boardroom during that time," she says on the Houston Innovators Podcast. "One of my takeaways was that very few of my board members looked like me. I had one or two women on any of my boards at a time in totality, and very few of my board members had been operators."

"I'd really like to change that, and I'd like there to be better representation and diversification in the boardroom," she adds. Continue reading.

Ryan Reisner, president and founder of SeekerPitch

Ryan Reisner is the\u00a0president and founder of SeekerPitch and The Reisner Group. Photo via LinkedIn

Confident job seekers have mostly been of the mindset that if they can just get in front of an employer, they can sell themselves into an offer for the open position. The obstacle then, is getting through the screening process to get an actual interview.

Until recently, the price of admission for starting or progressing in a desired career was a resume and cover letter stellar enough to catch the eye of the human resources and recruiting team. Outside of being buried in the immense pile of resumes recruiters do not have the bandwidth to get to, standing out in the sea of candidates can be daunting.

Resumes do not tell the full story as it is and it’s almost impossible for applicants to put their potential, soft skills and work personality into a document to be reviewed. So, what’s the solution?

It is a multi-layered problem, which requires a multi-layered solution, but one of the options gaining steam in the recruitment space is provided by SeekerPitch, a Houston-based HR technology platform utilizing generative AI to make hiring and interviewing more efficient.

“I've noticed that there's a ton of people that slip through the cracks,” says Ryan Reisner, president and founder of SeekerPitch and The Reisner Group. “And we spend all our time interviewing people to see if they have the soft skills. Resumes are hard skills. And now with AI, anybody can build the same exact resume. Everybody can say they have communication skills, leadership skills, and a lot of people say they have those." Continue reading.

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and CE-Ventures. Photo via Getty Images

Houston biotech startup secures $10M seed round to propel cancer-fighting therapy from bench to bedside

fresh funding

A Houston biotech company based off research out of UTHealth Houston has raised seed funding to continue developing its cancer-fighting therapeutic.

CrossBridge Bio, formed during the TMC Innovation’s Accelerator for Cancer Therapeutics program, closed a $10 million seed round led by TMC Venture Fund and Crescent Enterprises' VC arm, CE-Ventures. The round also included participation from Portal Innovations, Alexandria Venture Investments, Linden Lake Labs, and several pre-seed investors.

“We are thrilled to have the support of such experienced investors who share our vision of bringing transformative cancer therapies to patients in need,” Michael Torres, CEO of CrossBridge Bio, says in a news release. Torres served as an entrepreneur in residence of ACT.

The company is working on the next-generation of antibody-drug conjugates (ADC) therapeutics that process dual payloads as targeted treatments for a set of challenging cancers. The innovative treatment is based on research from UTHealth experts Dr. Kyoji Tsuchikama and Dr. Zhiqiang An.

“Our dual-payload ADC technology is designed to deliver synergistic therapeutic effects using highly stable linkers that ensure payload release only within the targeted cancer cells, thereby maximizing their therapeutic effectiveness while minimizing the liabilities associated with uptake in unintended tissues, as seen with many of today’s cancer treatments," Torres continues.

He explains that the funding will toward advancing CrossBridge's first development candidate, CBB-120, into preclinical non-GLP toxicology studies in addition to derisking the company’s proprietary linker technology with dual-payload applications, per the release.

As a result of the raise, William McKeon, president and CEO of the Texas Medical Center, and Damir Illich, manager of life sciences of CE-Ventures, will join CrossBridge Bio’s board of directors.

“We are proud to back CrossBridge Bio in their mission to develop the next generation of cancer therapies,” McKeon says in the release. “Their dual-payload ADCs are designed to deliver targeted drug release within cancer cells with greater stability, precision, and control. These breakthrough advancements have the potential to change patients’ lives worldwide and we look forward to helping drive their development.”

The Texas Medical Center's ACT program is making sure the most-promising cancer research makes it to its life-saving commercialization stage. Photo via tmc.edu

Houston program buoys promising cancer research with live-saving innovation

act-ing now

How do you bring promising cancer research to the masses? TMC Innovation's Accelerator for Cancer Therapeutics was established with that question in mind.

Funded by a $5 million grant from CPRIT, or the Cancer Prevention and Research Institute of Texas, in 2019 and in collaboration with the Gulf Coast Consortia and the University of Texas Medical Branch, the first cohort began their intensive work in 2021. The deadline to join the next cohort is October 13.

Since its inception, ACT has seen the forming of 19 companies — two of which have been awarded CPRIT seed grants, along with four in contention for one this year — as well as $92 million in dilutive funding and $10 million in non-dilutive funding.

“We’ve recruited investigators and companies from the breadth and width of the state of Texas, so all the way from Lubbock to Galveston from Dallas to the Rio Grande Valley,” Ahmed AlRawi, program manager, tells InnovationMap. “We've had an amazing set of investigators who have gone through the program — 56 teams to be precise.”

AlRawi says that the first pillar of the program is education. To that end, the cohort works with entrepreneurs in residence like Michael Torres. Best known as the co-founder of ReCode Therapeutics, Torres says that one of his greatest passions lies in translating science into medicines. ReCode is a genetic medicines company that is currently clinical-stage. It’s raised more than $300 million in the last two years, certainly something to which scientist-entrepreneurs earlier in their careers would aspire.

A longtime resident of Dallas, Torres moved his family to Houston last year, calling it “the place to be for cancer startups in Texas.”

Initially, says Torres, Houston wasn’t on his radar. But thanks to a call from ACT external advisor Dan Hargrove, Torres realized that the city might be a fit for him and his goals.

“I wanted to find a project that I could help support, sort of take my experience as a cofounder and help guide the next great startup within the ecosystem,” he says.

Torres and AlRawi agree that the biggest successes to come out of ACT so far include March Biosciences, a company from the first cohort, which is focused on developing CAR-T cell strategies to help combat hematological cancers; CPRIT fundee, OmniNano Pharmaceuticals, which uses patented nanotechnology to co-deliver a pair of therapeutical agents to solid tumors; and the latest, CrossBridge Bio.

Part of the most recent cohort, Torres has joined Drs. Kyoji Tsuchikama and Zhiqiang An as the last company’s CEO. To that end, he’s partnered with the world-class researchers out of UT Health Houston to build a next-generation antibody drug conjugate company that he believes will produce “better and safer and more effective drugs than what's currently on the market today.”

All the more reason that Torres he’s glad to have moved to Houston at what he calls “a really exciting time.” He’s thankful for the Texas Medical Center and the relationships it fosters. “We're all sort of aligning on creating a sustainable biotech ecosystem,” he says. And the next big cancer fighting company may well emerge from ACT.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.