Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. Photo courtesy of Lignium

In Houston, air pollution is usually more of an abstract concept than a harsh reality. But in parts of Chile, the consequences of heating homes with wet wood are catching up to residents.

“Given all the contamination, there are times kids aren’t allowed to go to school. The air pollution is really affecting people’s health,” says Agustín Ríos, COO of Lignium Energy.

Additionally, the methane and nitrous oxide produced by cattle farming are a problem. But Lignium Energy, an international company started in Chile and now headquartered in Houston’s Greentown Labs, has a solution that can solve both problems by upending the latter.

“There’s a lack of solutions with the problem of manure. Methane gases are destroying our planet,” says CEO and co-founder Enrique Guzmán. He goes on to say that most solutions currently being developed are expensive and complex. But not Lignium Energy’s method, invented by co-founder José Antonio Caraball.

Caraball has patented an extraordinarily simple concept. Lignium separates the solid from liquid excretions, then cleans the solid to generate a hay-like biomass. Biomass refers to organic matter that can be used as fuel. What Lignium makes from the cattle evacuations is a clean, odorless and highly calorific biomass.

Essentially, Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. “Our process is very cheap and very simple. That’s why we are a great solution,” explains Guzmán.

Caraball, an industrial engineer, came up with the idea six years ago, says Guzmán. Five years ago, he began working with the company, one year ago, Guzmán and Ríos picked up and moved to Houston.

“We decided to move out of Chile due to market size,” says Ríos. However, the product is already being sold to consumers in its homeland.

Why Houston? The reason was twofold. As an energy company, Ríos says that they wanted to be in “the energy capital of the world.” But Texas is also one of the largest sites of cattle farming on the planet. Lignium prefers to work with farms with more than 500 head to optimize harvesting the waste that becomes biomass.

With that in mind, Lignium has partnered with Southwest Regional Dairy Center in Stephenville, Texas, a little more than an hour southwest of Fort Worth, a town known as the world’s rodeo capital. The facility is associated with Texas A&M, though Guzmán says Lignium is not officially associated with the university.

Guzmán says that the company is currently hiring a team member to help Lignium figure out commercial logistics, as well as four or five other Houstonians who will help them take their product to market in the United States, and eventually around the globe. For now, he predicts that they will be able to sell to consumers in this country by early next year, if not the fourth quarter of 2023.

“We are very committed to the solution because, at the end of the day, if we do good work with the company, we are sure we can give better conditions to the cattle industry,” says Guzmán. “Then we can make a big impact on a real problem.

BP has partnered with an environmental nonprofit to reduce emissions of methane. Getty Images

BP forms new partnership to reduce methane emissions

Greener thinking

When it comes to greenhouse gas emissions in oil and gas, methane is a less talked about, sneakier culprit compared to carbon dioxide. While it remains in the atmosphere for a shorter period than CO2, methane is 84 times more potent than CO2 during its first 20 years after being emitted into the air.

BP, which has its North American headquarters in Houston, has set out a strategy to minimize its contributions of methane to the atmosphere. The company made a three-year deal with New York-based Environmental Defense Fund to reduce methane emissions in its global supply chain by incorporating new technologies and practices, which will be identified by the new partnership.

"BP is taking a leading role in addressing methane emissions, and this collaboration with EDF is another important step forward for us and for our industry," says Bernard Looney, BP's upstream chief executive, in a release. "We've made great progress driving down emissions across our own business, including meeting our industry-leading methane intensity target of 0.2 percent, but there is much more work to do and partnering with the committed and capable team at EDF will help us develop and share best practices."

BP and EDF will work with universities and third-party experts in order to identify cutting-edge technology for the new initiative, and the company hopes to serve as a leader in reducing greenhouse gas emissions, which is no small undertaking, says Fred Krupp, EDF president, in the release.

"The scale of the methane challenge is enormous, but so is the opportunity," Krupp says. "Whether natural gas can play a constructive role in the energy transition depends on aggressive measures to reduce emissions that include methane. BP took such a step today."

EDF, a nonprofit, won't be paid by BP — per EDF's policy —but BP will assist with funding when it comes to employing experts tasked with finding better technologies to minimize emissions.

"EDF and BP don't agree on everything, but we're finding common ground on methane," Krupp says in the release. "BP has shown early ambition to lead on methane technology. We hope to see more as BP delivers on its own stringent methane goal and we work together to spread solutions industrywide."

BP and EDF have identified three key areas the initiative will focus on this year.

New detection technology
BP will grant up to $500,000 to a detection and quantification technology project at Colorado State University. The initiative includes drone technology and stationary monitoring that hopes to speed up methane emission detection time.

"CSU welcomes this support from BP and EDF for this critical research work, and this provides the necessary confidence and momentum for other stakeholders to contribute in a collaborative environment, in which the results and tools will benefit the wider industry," says Dan Zimmerle, senior research associate for Colorado State University's Energy Institute, in the release.

Advances in digital technology
This year, BP and EDF will announce a digitization project for reducing methane emissions. An EDF report, Fueling the Digital Methane Future, which produced with Accenture Strategy, identified solutions such as machine learning, artificial intelligence, and augmented reality as potential pathways to fewer emissions.

Joint ventures
A 2018 EDF report proved that oil and gas companies can team up to reduce emissions together. BP and EDF plan to host a workshop to find best practices for emission reductions on a larger scale.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”