This week's roundup of Houston innovators includes Melanie Johnson of Collaborative for Children, Aditya Mohite of Rice University, Lani Doyle of Cart.com. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a nonprofit leader introducing new technologies, a solar tech-focused Rice University professor, and a new hire for a Houston fast-growing startup.

Melanie Johnson, president and CEO of Collaborative for Children

Collaborative for Children is focused on utilizing social-emotional learning robots and coding tech toys. Photo courtesy

Generally, when children are under the age of five, educators believe that they are best suited for and interested in learning, because those are the years in which there is the strongest opportunity to build a broad and solid foundation for lifelong literacy and well-being.

That sentiment is deeply held by Collaborative for Children, the Houston-based nonprofit organization with the mission to meaningfully improve the quality of early childhood education and provide access to cutting-edge technology through its Centers of Excellence to all children, especially those in low-income and marginalized communities.

“The reason the organization was started about 40 years ago is that a group of philanthropists in the greater Houston area suggested that this was so important because 90 percent of the brain develops or grows in the time frame between ages zero to five years of age,” Melanie Johnson, president and CEO of Collaborative for Children, tells InnovationMap. Read more.

Aditya Mohite, director of Rice Engineering Initiative for Energy Transition and Sustainability

The new process developed by Rice University researchers makes solar cells that are about 10 times more durable than traditional methods. Photo courtesy

Presented on the cover of a June issue of Science, a study from Rice University engineer Aditya Mohite's lab uncovered a method to synthesize a high-efficiency perovskite solar cell, known as formamidinium lead iodide (FAPbI3), converting them into ultrastable high-quality photovoltaic films, according to a statement from Rice. Photovoltaic films convert sunlight into electricity.

The new process makes solar cells that are about 10 times more durable than traditional methods.

“Right now, we think that this is state of the art in terms of stability,” Mohite said in a statement. “Perovskite solar cells have the potential to revolutionize energy production, but achieving long-duration stability has been a significant challenge.” Read more.

Lani Doyle, chief people officer at Cart.com

Fast-growing Cart.com has named its new chief people officer. Photo courtesy of Cart.com

Houston-based e-commerce software and services company Cart.com has hired a former Shopify executive as its chief people officer.

Before joining Cart.com, Lani Doyle was chief HR officer at Strategic Solutions Group, a provider of health care software. Previously, she was vice president of HR and people operations at 6 River Systems, a provider of software and robotics for warehouses. Prior to that, Doyle was head of talent development and operations at Shopify, an e-commerce platform for businesses that posted revenue of $7.1 billion in 2023.

“Cart.com is one of the fastest-growing companies in commerce today, and I’m excited to partner with our teams to help drive growth and scalability,” Doyle says in a news release. “I am eager to contribute to shaping our culture and developing programming that supports and elevates high-performing teams, ensuring we achieve our ambitious goals.” Read more.

Collaborative for Children is focused on utilizing social-emotional learning robots and coding tech toys. Photo courtesy of Collaborative for Children

Education equity-focused nonprofit taps into robotics, AI to better serve Houston children

the future is bright

Generally, when children are under the age of five, educators believe that they are best suited for and interested in learning, because those are the years in which there is the strongest opportunity to build a broad and solid foundation for lifelong literacy and well-being.

That sentiment is deeply held by Collaborative for Children, the Houston-based nonprofit organization with the mission to meaningfully improve the quality of early childhood education and provide access to cutting-edge technology through its Centers of Excellence to all children, especially those in low-income and marginalized communities.

“The reason the organization was started about 40 years ago is that a group of philanthropists in the greater Houston area suggested that this was so important because 90 percent of the brain develops or grows in the time frame between ages zero to five years of age,” Melanie Johnson, president and CEO of Collaborative for Children, tells InnovationMap.

“And if we were losing children and not preparing them by third grade to be literate, and then subsequently losing them after that for high dropout rates and achievement gaps between poor and affluent children, that this would be the perfect place to start," she continues. "And so, they put the collaborative, the emphasis, and finances collaborative of every, most every early education effort around this region.”

Collaborative for Children’s work in the community is centered around making sure that there is educational equity for all children, regardless of financial status, and providing access to technologies in meaningful ways.

“Ultimately, we want to bridge the digital divide early on so that when children start off their academic journey, they're starting off equipped with the skills to be successful there on,” says Johnson.

Most recently, the institution has focused on utilizing social-emotional learning robots and coding tech toys like the Pepper — the world’s first social humanoid robot able to recognize faces and basic human emotions — and NAO, which resembles human being and stimulates, robots to enhance learning in the classrooms of its Centers of Excellence.

“Technology enhances the learning experience in the Centers of Excellence in ways that a teacher might not be able to,” says Johnson. “Artificial intelligence is used in gamification to allow a child to play and learn while playing.”

For Collaborative for Children, gamification involves transforming typical academic components into gaming themes.

“While playing, the AI gauges the level of skills that they’ve been able to enter into that system and respond with even more challenging tasks or tasks that are still lateral so that they can continue to repeat that skill,” says Johnson.

The socio-emotional learning robots are indeed fascinating, but how does the nonprofit reach these children, and their parents, who might be skeptical of technology?

Ultimately, through the teachers. They draw them in via the technology. If teachers are excited, they act as a conductor of that energy to their students, making their innovative lessons well, electric.

That resonates with most all children, but especially with those diagnosed with autism.

“Robotics like NAO are great for children on the autism spectrum because they are emotionally sensitive and emotionally intelligent,” says Johnson. “They are low sensory, so as NAO runs around the classroom, it can literally have individual and unique conversations with each child based on facial recognition. But most importantly for me, is that this particular robot is able to evaluate children without statistical bias that a teacher might have.

“A teacher might think that because a child confuses the letter D and B, which are basically shaped the same in opposite directions, that they're not learning," she continues. "And the robot will have no prior knowledge in terms of, is this child the better child, or have they been learning throughout the year? The answers are accurate or inaccurate. So, they remove statistical bias when assessing children in the classroom.”

The misconception about teaching technologies is that it’s about screen time. According to Johnson, it’s not. It’s more about interacting with technology.

“We’ve added, you know, all kinds of modern-day technology so that this world that we're preparing these children for 80 percent of the jobs we don't even know will exist when they are adults,” says Johnson. “So, we're just trying to make sure that there is no divide in terms of 21st century skills and 21st century preparation.”

Building Blocks Ep. 12youtu.be

Collaborative for Children has so many facets to assist children with their early development, but there are inherent challenges when attempting to reach their target audience in low-income and marginalized communities that the organization counters with programs like the Collab Lab, which is a mobile classroom that brings critical, future-focused early childhood education directly to the community at no cost.

Designed to be convenient for families, Collab Lab connects parents and their youngest children with experts, educators, resources, and proven programs whose goal is to make sure that kids have the skills essential to learning from the moment they walk into kindergarten for the first time.

“There are a myriad of challenges in these communities that we serve, specifically with technology,” says Johnson. “When children enter first grade, and especially second grade, they're given notepads, basically, digital notepads, because it's no good in pre-K oftentimes, but it is very helpful for children who will never have access or have limited access to iPads and things of that nature.

“So while we don't want them to be babysat by screen time and have social media impacting their self-image and self-worth, we definitely want them to have appropriate doses and appropriate uses of technology in the early education, so that those barriers that their parents face with limited means, that these children can go to first grade and into the robotics class and be able to be evaluated and assessed on the digital notepads that are required nowadays,” she continues.

While technology is very important, Collaborative for Children also focuses on the critical social and emotional skills children need as they develop and the all too important relationship between children and their parents and teachers.

“Theory leads our work,” says Johnson. “It's all focused on fine motor skills, gross motor skills, social emotional, can a child build rapport with their teacher and with the students around them. Those things are paramount and will never change.

“What we use technology to do is enhance and remove biases from teacher-pupil interaction, but also to bridge any kind of divide in terms of 21st century skills. And in addition to that, we engage the families. So families who might not know about hydro-fueled cars in those communities that we serve will be able to be exposed to those concepts, as well through our group connections or parent partnerships.”

Ultimately, the last thing Collaborative for Children wants is to send children from early learning and childcare environments into the K-12 system unprepared to be successful for the real world.

“At Collaborative for Children,” adds Johnson. “We are continuously pushing the envelope at our Centers for Excellence so that the children that we serve will always be on the cutting edge.

The last thing Collaborative for Children wants is to send children from early learning and childcare environments into the K-12 system unprepared to be successful for the real world. Photo courtesy of Collaborative for Children

A new business accelerator is launching to help grow access to child care. Educational First Steps/Facebook

Business accelerator focused on child care centers launches in Houston following $3M grant

for the kids

A Houston-based organization has launched the state's first business accelerator program focused on child care centers in order to strengthen Texans' access to child care.

The Texas Workforce Commission has awarded Collaborative for Children a $3 million grant as the organization has rolled out an eight-week business training program that will provide instruction and guidance for budgeting, performance management and emergency preparedness within the K-12 space.

"We are thrilled that the state has entrusted us with this grant to build a program that will provide the support so many child care programs need, particularly those in quality child care deserts," says Melanie Johnson, president and CEO of Collaborative for Children, in a news release. "Child care is a priority for every community. It makes it possible for parents to earn a living and for businesses to have a stable workforce, but most importantly, it prepares our youngest citizens for the 21st century workforce. We must gird our child care system so that child care programs not only survive, but also thrive after the next crisis."

The program is a collaboration between Collaborative for Children and Texas A&M University's Bush School of Government and Public Policy Center for Nonprofits and Philanthropy. The school will be providing resources and will develop several online modules for the accelerator.

Collaborative for Children has also created a Centers of Excellence program as a part of the accelerator, and the Houston area has 24 locations within the program. The COEs will receive support within the program and have been recognized as providing "high-quality early childhood education." The type of support the COEs receive include professional development, emotional support, access to tallent, marketing help, and more.

The organization has been in Houston supporting local child care professionals since the late 1980s. Collaborative for Children has several programs for educators and families and has specialized COVID-19 help online as well.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)