This week's innovators to know roundup includes Patrick Jankowski of the Greater Houston Partnership, Deanea LeFlore of The Ion, and Dr. Mehdi Razavi of the Texas Heart Institute. Photos courtesy

Editor's note: In this week's Monday roundup of Houston innovators, I'm introducing you to three innovators across the city — from the Greater Houston Partnership, The Ion, and Texas Heart Institute.

Patrick Jankowski, senior vice president of research

The Greater Houston Partnership hosted its annual economic outlook event online this week. Photo courtesy of the GHP

At the GHP's annual economic outlook, Patrick Jankowski, senior vice president of research, predicts that 2021 will be a "bipolar year." The first and second halves of the year are going to look different, Jankowski says, it's just a matter of how different at this point. In addition to the vaccine and COVID case numbers, the things the GHP as well as Houston businesses are watching is the new Biden Administration.

"We won't see any significant growth in the economy until we get to the second half of the year," he says. Read more.

Deanea LeFlore, director of partnerships at The Ion

Deanea LeFlore, director of partnerships at The Ion, joins this week's episode of the Houston Innovators Podcast. Photo courtesy of Station Houston

Houston is just a few months away from being able to walk into The Ion, and the organization's director of partnerships, Deanea LeFlore, hopes that when that happens, they are entering a innovation hub reflective of the city.

"I think that when people walk into The Ion, what's personally important to me, is that it looks like Houston so that you see yourself reflected in the people in the building as well as the programming," LeFlore says. "That's my biggest hope and aspiration, and I believe we are well on track to be able to deliver on exactly that."

LeFlore shares more on what she's been working on — from online programming to growing partnerships at The Ion. Listen to the podcast and read more.

Dr. Mehdi Razavi, director of Electrophysiology Clinical Research & Innovations at the Texas Heart Institute

A medical device coming out of the Texas Heart Institute has been recognized for its innovation. Photo via THI

A new technology out of Houston's Texas Heart Institute's was named the top future medical product design worldwide last month as part of the annual Create the Future Design contest. The med device, which allows for pain-free defibrillation, is being developed by THI's Electrophysiology Clinical Research & Innovations team in conjunction with scientists at Rice University and UCLA, the technology allows doctors to place up to 12 tiny nodes around the heart to pace and defibrillate the heart without using a shock.

The technology will be most useful for atrial fibrillation and ventricular fibrillation, which can lead to sudden death, stroke, and congestive heart failure, according to Dr. Mehdi Razavi, the head investigator on this project and leader of the THI team.

"It's extremely painful. It's like someone takes a two by four and just pounds you from the inside in the chest, or a horse kicking you in the chest," Razavi says. He went on to add: "I have actually one patient who was a Vietnam veteran. He said nothing that he faced in battle was as disconcerting—not just because of the pain, but the fact that you don't know when the pain is when the shock is about to happen. That anxiety is just overwhelming." Read more.

A medical device coming out of the Texas Heart Institute has been recognized for its innovation. Photo via THI

Houston innovation team wins global award for painless heart technology

heart of gold

Houston's Texas Heart Institute's pain-free defibrillation technology was named the top future medical product design worldwide last month as part of the annual Create the Future Design contest.

The tiny technology aims to change the way cardiac arrhythmias are managed and remove the often traumatizing pain associated with their treatment. Developed by THI's Electrophysiology Clinical Research & Innovations team in conjunction with scientists at Rice University and UCLA, the technology allows doctors to place up to 12 tiny nodes around the heart to pace and defibrillate the heart without using a shock.

The technology will be most useful for atrial fibrillation and ventricular fibrillation, which can lead to sudden death, stroke, and congestive heart failure, according to Dr. Mehdi Razavi, the head investigator on this project and leader of the THI team. Razavi says winning the award "speaks to the need" of a new solution in the field as the shocks associated with traditional implantable cardioverter-defibrillators, or ICDs, can cause severe PTSD among patients.

"It's extremely painful. It's like someone takes a two by four and just pounds you from the inside in the chest, or a horse kicking you in the chest," Razavi says. He went on to add: "I have actually one patient who was a Vietnam veteran. He said nothing that he faced in battle was as disconcerting—not just because of the pain, but the fact that you don't know when the pain is when the shock is about to happen. That anxiety is just overwhelming."

Instead of shocking the patient's heart in a central location, the nodes spread energy needed to pace the heart at the correct rate throughout the muscle based on their location. This dilutes the feeling of a sudden jolt, and Razavi says, defibrillation using his technology could go unnoticed in patients.

In addition to this game-changing possibility, the new technology is physically safer in many ways, too. The miniaturized battery-less pacing system is free of traditional wires that send electrical pulses to the heart, known as leads. These leads can dislodge and fracture within the body and can cause infection.

The technology's wireless and miniature nature also allows doctors to better access regions of the heart that currently are difficult to reach with bulkier ICDs. Each node can be individually programmed and can stimulate different regions of the heart in different ways, as well.

A cross disciplinary team developed the device. Aydin Babakhani, an associate professor in physical and wave electronics at UCLA first developed the nodes to stimulate electricity for non-medical purposes. Behnaam Aazhang, the J.S. Abercrombie Professor of Electrical and Computer Engineering and the Director of the Rice Neuroengineering Initiative, first introduced Razavi to Babakhani, and the trio worked together to bring the technology to the medical arena, along with about 15 to 20 other medical professionals and students.

The team at Rice is continuing to develop the hardware for clinical use. And studies on the use of defibrillation through these nodes across the heart are being conducted out to the Texas Heart Institute's research lab. Razavi and his team are currently conducting preclinical studies on the new form of treatment and aims to roll it out for clinical use in the next three to five years.

From Houston inventors being recognized to Chevron's latest investment, here's what innovation news you need to know. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Chevron makes another investment, Houston researchers nationally recognized, and more innovation news

Short Stories

Houston's innovation news hasn't quite slowed yet for the holidays. This most recent news roundup includes lots of money raised, a new contract for a Houston startup, innovators recognized and more.

For more daily innovation news, subscribe to InnovationMap's newsletter, which goes out every weekday at 7 am.

Chevron Technology Ventures invests in Texas company

Courtesy of CTV

Houston-based Chevron Technology Ventures has contributed to Austin-based motor tech company Infinitum Electric's $12.5 million Series B round of financing. New Mexico-based Cottonwood Technology Fund and includes participation AJAX Strategies and other individual investors.

The company plans to use the funds to build out its research and development, engineering, supply chain, and production teams.

"Infinitum's mission aligns well with our goals for the Future Energy Fund," says Barbara Burger, president of CTV, in a release. "The purpose of the Future Energy Fund is to invest in breakthrough energy technologies that reflect Chevron's commitment to lower emission energy sources and that are integral to low-carbon and efficient value chains."

4 Houston researchers named fellows of the National Academy of Inventors

ideas

Getty Images

The National Academy of Inventors named 168 academic innovators to NAI Fellow status — and four conduct their research right here in Houston. The program "highlights academic inventors who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society," reads the news release.

The four Houston inventors and their institutions are as follows:

List ranks Houston's fastest growing companies

Chart via Grojo.com

Growjo named the 100 fastest-growing companies in Houston for 2019, and, while the study notes the city's large oil and gas and medical industries, also acknowledges its growing tech and software scene. The companies were selected by a myriad of factors.

"Our algorithm is based on multiple datasets including employee growth, estimated revenue growth, valuations, quality and quantity of funding, hiring announcements, current job openings, leadership team announcements, and numerous other growth triggers," reads the website.

The top five companies on the list are:

  1. Midcoast Energy, which has 183 employees and a 17 percent employee growth rate.
  2. ibüümerang, which has 528 employees, and a 633 percent employee growth rate.
  3. Arion, which has 136 employees and a 216 percent employee growth rate.
  4. GoExpedi, which as 59 employees and a 119 percent employee growth rate.
  5. Code Ninjas, which has 338 employees and a 63 percent employee growth rate.

For the full list, visit Growjo.com.

TMCx company wins awards 

Image via abilitechmedical.com

Abilitech Medical, which recently completed the TMCx program, has taken home some wins in Minnesota, where it's based. The company was named named among the state's topmed tech companies by the Minnesota High Tech Association at the 2019 TEKNE awards and 2019, as well as the grand prize winner and top woman-led business by the University of Minnesota's business school at its 2019 Minnesota Cup competition.

The medical device company's technology includes the Abilitech™ Assist, which assists patients with Multiple Sclerosis, rehabilitating from stoke, or other conditions with eating, drinking, and using a computer.

"We've met so many people whose lives will be changed with this innovation," says CEO and founder Angie Conley in a news release. "Through the Texas Medical Center accelerator, we met Dr. Hany Samir who championed our upcoming stroke study."

Samir is a cardiac anesthesiologist at Houston Methodist. He lost his ability to work and perform simple daily functions after a stroke debilitated his left arm.

"I'm unable to practice the medicine I love. I want to hold my wife again with two hands and enjoy dinner with her, without having her cut my food. I want to have a cup of coffee without asking for help," says Samir in the release. "Regaining function in my arm will restore my life."

Pandata Tech receives Department of Defense contract

Photo courtesy of Pandata Tech

Houston-based ​Pandata Tech secured a contract with the United States Department of Defense from the Rapid Sustainment Office of the the United States Air Force last month. The Phase II contract will allow the company to work with Joint Base Elmendorf-Richardson in Alaska to develop a scalable data quality platform.

The access to data will aid in natural disasters, per the release. The goal of the contract would be for a Phase III contract and an opportunity to scale the technology into other branches of military. The company also had a Phase I contract signed in August before securing the Phase II in November.

"Pandata Tech's proprietary DQM software was built during a development partnership with one of the world's largest offshore drilling companies. Because the technology was tested and built with offshore drilling data, the shift to aircraft carriers would be smooth," explains Gustavo Sanchez, co-founder of Pandata Tech, in a news release.

Houston company receives Department of Energy funding

Photo via aerominepower.com

The U.S. Department of Energy's National Renewable Energy Laboratory — with funding from the DOE's Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office — selected a Houston company for its Competitiveness Improvement Project.

Westergaard Solutions, founded by Houstonian Carsten Westergaard, was named among the 2019 CIP Awardees. Among the company's assets is AeroMine, which competed in the most recent Houston cohort in MassChallenge Texas. The company "will implement an innovative building-integrated wind generation concept with no external moving parts, moving from a preliminary conceptual design to a pre-production prototype design that is ready for testing," according to the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH student earns prestigious award for cancer vaccine research

up-and-comer

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.

Houston founder on shaping the future of medicine through biotechnology and resilience

Guest Column

Living with chronic disease has shaped my life in profound ways. My journey began in 5th grade when I was diagnosed with Scheuermann’s disease, a degenerative disc condition that kept me sidelined for an entire year. Later, I was diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), a condition that significantly impacts nerve recovery. These experiences didn’t just challenge me physically, they reshaped my perspective on healthcare — and ultimately set me on my path to entrepreneurship. What started as personal health struggles evolved into a mission to transform patient care through innovative biotechnology.

A defining part of living with these conditions was the diagnostic process. I underwent nerve tests that involved electrical shocks to my hands and arms — without anesthesia — to measure nerve activity. The pain was intense, and each test left me thinking: There has to be a better way. Even in those difficult moments, I found myself thinking about how to improve the tools and processes used in healthcare.

HNPP, in particular, has been a frustrating condition. For most people, sleeping on an arm might cause temporary numbness that disappears in an hour. For me, that same numbness can last six months. Even more debilitating is the loss of strength and fine motor skills. Living with this reality forced me to take an active role in understanding my health and seeking solutions, a mindset that would later shape my approach to leadership.

Growing up in Houston, I was surrounded by innovation. My grandfather, a pioneering urologist, was among the first to introduce kidney dialysis in the city in the 1950s. His dedication to advancing patient care initially inspired me to pursue medicine. Though my path eventually led me to healthcare administration and eventually biotech, his influence instilled in me a lifelong commitment to medicine and making a difference.

Houston’s thriving medical and entrepreneurial ecosystems played a critical role in my journey. The city’s culture of innovation and collaboration provided opportunities to explore solutions to unmet medical needs. When I transitioned from healthcare administration to founding biotech companies, I drew on the same resilience I had developed while managing my own health challenges.

My experience with chronic disease also shaped my leadership philosophy. Rather than accepting diagnoses passively, I took a proactive approach questioning assumptions, collaborating with experts, and seeking new solutions. These same principles now guide decision-making at FibroBiologics, where we are committed to developing groundbreaking therapies that go beyond symptom management to address the root causes of disease.

The resilience I built through my health struggles has been invaluable in navigating business challenges. While my early career in healthcare administration provided industry insights, launching and leading companies required the same determination I had relied on in my personal health journey.

I believe the future of healthcare lies in curative treatments, not just symptom management. Fibroblast cells hold the promise of engaging the body’s own healing processes — the most powerful cure for chronic diseases. Cell therapy represents both a scientific breakthrough and a significant business opportunity, one that has the potential to improve patient outcomes while reducing long-term healthcare costs.

Innovation in medicine isn’t just about technology; it’s about reimagining what’s possible. The future of healthcare is being written today. At FibroBiologics, our mission is driven by more than just financial success. We are focused on making a meaningful impact on patients’ lives, and this purpose-driven approach helps attract talent, engage stakeholders, and differentiate in the marketplace. Aligning business goals with patient needs isn’t just the right thing to do, it’s a powerful model for sustainable growth and lasting innovation in biotech.

---

Pete O’Heeron is the CEO and founder of FibroBiologics, a Houston-based regenerative medicine company.


Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.