This week's innovators to know roundup includes Patrick Jankowski of the Greater Houston Partnership, Deanea LeFlore of The Ion, and Dr. Mehdi Razavi of the Texas Heart Institute. Photos courtesy

Editor's note: In this week's Monday roundup of Houston innovators, I'm introducing you to three innovators across the city — from the Greater Houston Partnership, The Ion, and Texas Heart Institute.

Patrick Jankowski, senior vice president of research

The Greater Houston Partnership hosted its annual economic outlook event online this week. Photo courtesy of the GHP

At the GHP's annual economic outlook, Patrick Jankowski, senior vice president of research, predicts that 2021 will be a "bipolar year." The first and second halves of the year are going to look different, Jankowski says, it's just a matter of how different at this point. In addition to the vaccine and COVID case numbers, the things the GHP as well as Houston businesses are watching is the new Biden Administration.

"We won't see any significant growth in the economy until we get to the second half of the year," he says. Read more.

Deanea LeFlore, director of partnerships at The Ion

Deanea LeFlore, director of partnerships at The Ion, joins this week's episode of the Houston Innovators Podcast. Photo courtesy of Station Houston

Houston is just a few months away from being able to walk into The Ion, and the organization's director of partnerships, Deanea LeFlore, hopes that when that happens, they are entering a innovation hub reflective of the city.

"I think that when people walk into The Ion, what's personally important to me, is that it looks like Houston so that you see yourself reflected in the people in the building as well as the programming," LeFlore says. "That's my biggest hope and aspiration, and I believe we are well on track to be able to deliver on exactly that."

LeFlore shares more on what she's been working on — from online programming to growing partnerships at The Ion. Listen to the podcast and read more.

Dr. Mehdi Razavi, director of Electrophysiology Clinical Research & Innovations at the Texas Heart Institute

A medical device coming out of the Texas Heart Institute has been recognized for its innovation. Photo via THI

A new technology out of Houston's Texas Heart Institute's was named the top future medical product design worldwide last month as part of the annual Create the Future Design contest. The med device, which allows for pain-free defibrillation, is being developed by THI's Electrophysiology Clinical Research & Innovations team in conjunction with scientists at Rice University and UCLA, the technology allows doctors to place up to 12 tiny nodes around the heart to pace and defibrillate the heart without using a shock.

The technology will be most useful for atrial fibrillation and ventricular fibrillation, which can lead to sudden death, stroke, and congestive heart failure, according to Dr. Mehdi Razavi, the head investigator on this project and leader of the THI team.

"It's extremely painful. It's like someone takes a two by four and just pounds you from the inside in the chest, or a horse kicking you in the chest," Razavi says. He went on to add: "I have actually one patient who was a Vietnam veteran. He said nothing that he faced in battle was as disconcerting—not just because of the pain, but the fact that you don't know when the pain is when the shock is about to happen. That anxiety is just overwhelming." Read more.

A medical device coming out of the Texas Heart Institute has been recognized for its innovation. Photo via THI

Houston innovation team wins global award for painless heart technology

heart of gold

Houston's Texas Heart Institute's pain-free defibrillation technology was named the top future medical product design worldwide last month as part of the annual Create the Future Design contest.

The tiny technology aims to change the way cardiac arrhythmias are managed and remove the often traumatizing pain associated with their treatment. Developed by THI's Electrophysiology Clinical Research & Innovations team in conjunction with scientists at Rice University and UCLA, the technology allows doctors to place up to 12 tiny nodes around the heart to pace and defibrillate the heart without using a shock.

The technology will be most useful for atrial fibrillation and ventricular fibrillation, which can lead to sudden death, stroke, and congestive heart failure, according to Dr. Mehdi Razavi, the head investigator on this project and leader of the THI team. Razavi says winning the award "speaks to the need" of a new solution in the field as the shocks associated with traditional implantable cardioverter-defibrillators, or ICDs, can cause severe PTSD among patients.

"It's extremely painful. It's like someone takes a two by four and just pounds you from the inside in the chest, or a horse kicking you in the chest," Razavi says. He went on to add: "I have actually one patient who was a Vietnam veteran. He said nothing that he faced in battle was as disconcerting—not just because of the pain, but the fact that you don't know when the pain is when the shock is about to happen. That anxiety is just overwhelming."

Instead of shocking the patient's heart in a central location, the nodes spread energy needed to pace the heart at the correct rate throughout the muscle based on their location. This dilutes the feeling of a sudden jolt, and Razavi says, defibrillation using his technology could go unnoticed in patients.

In addition to this game-changing possibility, the new technology is physically safer in many ways, too. The miniaturized battery-less pacing system is free of traditional wires that send electrical pulses to the heart, known as leads. These leads can dislodge and fracture within the body and can cause infection.

The technology's wireless and miniature nature also allows doctors to better access regions of the heart that currently are difficult to reach with bulkier ICDs. Each node can be individually programmed and can stimulate different regions of the heart in different ways, as well.

A cross disciplinary team developed the device. Aydin Babakhani, an associate professor in physical and wave electronics at UCLA first developed the nodes to stimulate electricity for non-medical purposes. Behnaam Aazhang, the J.S. Abercrombie Professor of Electrical and Computer Engineering and the Director of the Rice Neuroengineering Initiative, first introduced Razavi to Babakhani, and the trio worked together to bring the technology to the medical arena, along with about 15 to 20 other medical professionals and students.

The team at Rice is continuing to develop the hardware for clinical use. And studies on the use of defibrillation through these nodes across the heart are being conducted out to the Texas Heart Institute's research lab. Razavi and his team are currently conducting preclinical studies on the new form of treatment and aims to roll it out for clinical use in the next three to five years.

From Houston inventors being recognized to Chevron's latest investment, here's what innovation news you need to know. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Chevron makes another investment, Houston researchers nationally recognized, and more innovation news

Short Stories

Houston's innovation news hasn't quite slowed yet for the holidays. This most recent news roundup includes lots of money raised, a new contract for a Houston startup, innovators recognized and more.

For more daily innovation news, subscribe to InnovationMap's newsletter, which goes out every weekday at 7 am.

Chevron Technology Ventures invests in Texas company

Courtesy of CTV

Houston-based Chevron Technology Ventures has contributed to Austin-based motor tech company Infinitum Electric's $12.5 million Series B round of financing. New Mexico-based Cottonwood Technology Fund and includes participation AJAX Strategies and other individual investors.

The company plans to use the funds to build out its research and development, engineering, supply chain, and production teams.

"Infinitum's mission aligns well with our goals for the Future Energy Fund," says Barbara Burger, president of CTV, in a release. "The purpose of the Future Energy Fund is to invest in breakthrough energy technologies that reflect Chevron's commitment to lower emission energy sources and that are integral to low-carbon and efficient value chains."

4 Houston researchers named fellows of the National Academy of Inventors

ideas

Getty Images

The National Academy of Inventors named 168 academic innovators to NAI Fellow status — and four conduct their research right here in Houston. The program "highlights academic inventors who have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society," reads the news release.

The four Houston inventors and their institutions are as follows:

List ranks Houston's fastest growing companies

Chart via Grojo.com

Growjo named the 100 fastest-growing companies in Houston for 2019, and, while the study notes the city's large oil and gas and medical industries, also acknowledges its growing tech and software scene. The companies were selected by a myriad of factors.

"Our algorithm is based on multiple datasets including employee growth, estimated revenue growth, valuations, quality and quantity of funding, hiring announcements, current job openings, leadership team announcements, and numerous other growth triggers," reads the website.

The top five companies on the list are:

  1. Midcoast Energy, which has 183 employees and a 17 percent employee growth rate.
  2. ibüümerang, which has 528 employees, and a 633 percent employee growth rate.
  3. Arion, which has 136 employees and a 216 percent employee growth rate.
  4. GoExpedi, which as 59 employees and a 119 percent employee growth rate.
  5. Code Ninjas, which has 338 employees and a 63 percent employee growth rate.

For the full list, visit Growjo.com.

TMCx company wins awards 

Image via abilitechmedical.com

Abilitech Medical, which recently completed the TMCx program, has taken home some wins in Minnesota, where it's based. The company was named named among the state's topmed tech companies by the Minnesota High Tech Association at the 2019 TEKNE awards and 2019, as well as the grand prize winner and top woman-led business by the University of Minnesota's business school at its 2019 Minnesota Cup competition.

The medical device company's technology includes the Abilitech™ Assist, which assists patients with Multiple Sclerosis, rehabilitating from stoke, or other conditions with eating, drinking, and using a computer.

"We've met so many people whose lives will be changed with this innovation," says CEO and founder Angie Conley in a news release. "Through the Texas Medical Center accelerator, we met Dr. Hany Samir who championed our upcoming stroke study."

Samir is a cardiac anesthesiologist at Houston Methodist. He lost his ability to work and perform simple daily functions after a stroke debilitated his left arm.

"I'm unable to practice the medicine I love. I want to hold my wife again with two hands and enjoy dinner with her, without having her cut my food. I want to have a cup of coffee without asking for help," says Samir in the release. "Regaining function in my arm will restore my life."

Pandata Tech receives Department of Defense contract

Photo courtesy of Pandata Tech

Houston-based ​Pandata Tech secured a contract with the United States Department of Defense from the Rapid Sustainment Office of the the United States Air Force last month. The Phase II contract will allow the company to work with Joint Base Elmendorf-Richardson in Alaska to develop a scalable data quality platform.

The access to data will aid in natural disasters, per the release. The goal of the contract would be for a Phase III contract and an opportunity to scale the technology into other branches of military. The company also had a Phase I contract signed in August before securing the Phase II in November.

"Pandata Tech's proprietary DQM software was built during a development partnership with one of the world's largest offshore drilling companies. Because the technology was tested and built with offshore drilling data, the shift to aircraft carriers would be smooth," explains Gustavo Sanchez, co-founder of Pandata Tech, in a news release.

Houston company receives Department of Energy funding

Photo via aerominepower.com

The U.S. Department of Energy's National Renewable Energy Laboratory — with funding from the DOE's Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office — selected a Houston company for its Competitiveness Improvement Project.

Westergaard Solutions, founded by Houstonian Carsten Westergaard, was named among the 2019 CIP Awardees. Among the company's assets is AeroMine, which competed in the most recent Houston cohort in MassChallenge Texas. The company "will implement an innovative building-integrated wind generation concept with no external moving parts, moving from a preliminary conceptual design to a pre-production prototype design that is ready for testing," according to the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”