The project was part of a year-long senior design capstone by six students, known as Team Bay-Max, in Rice's Oshman Engineering Design Kitchen. Photo by Jeff Fitlow/Rice University

A team of Rice University engineering students has developed a new way for underwater robots to move around, save power and work more efficiently and quietly.

The robot uses reversible hydrogen fuel cell-based buoyancy control devices that convert water into hydrogen and oxygen (and the reverse) using electricity. Traditional underwater robots use thrusters or large pumps and propellers to change and hold depth, which can be heavy, have higher costs and use more energy. The use of reversible hydrogen fuel cells with balloons, allows the new robot to smoothly adjust its depth with less energy usage, according to a statement from Rice.

The project was part of a year-long senior design capstone by six students, known as Team Bay-Max, in Rice's Oshman Engineering Design Kitchen.

The students—Andrew Bare, Spencer Darwall, Noah Elzner, Rafe Neathery, Ethan Peck and Dan Zislis— won second place in the Willy Revolution Award for Outstanding Innovation at the Huff OEDK Engineering Design Showcase held at the Ion last month.

“Having spent a year on it now and putting so much time into it, getting to see the result of all that work come together is really rewarding,” Peck said in the statement.

“With a project like this, integration was critical,” Zislis added. “Another takeaway for me is the importance of determining a clear scope for any given project. With this robot, we could have focused on a lot of different things. For instance, we could have worked on improving fuel cell efficiency or making a robotic arm. Instead, we chose to keep these other elements simple so as not to divert focus away from the main part, which is the buoyancy control device. This kind of decision-making process is not just part of good engineering, but it’s relevant with everything in life.”

Elzner, for instance, focused on the dashboard that the robot feeds information to as it collects data from different sensors. It displays core system information, real-time graphs of the robot’s location and a simulation of its relative orientation, according to the statement.

Darwall, took a " deep dive into control theory and learn(ed) new software" to incorporate the video game joystick that allows the robot to combine manual control with an automatic stabilizing algorithm.

The proof-of-concept robot has potential applications in environmental monitoring, oceanographic research, and military and industrial tasks, according to Rice.

The team based the project on an academic paper by Houston researchers that showed that fuel cell-enabled depth control could reduce autonomous underwater vehicles’ energy consumption by as much as 85 percent.

It was authored by Rice professor Fathi Ghorbel and members of the University of Houston's Zheng Chen lab.

“This collaborative research aims to develop tetherless continuum soft engines that utilize reversible proton exchange membrane fuel cells and water electrolyzers to drive volume-mass transformation," Ghorbel said in a statement. "Through this design project, the BayMax team proved the efficacy of this technology in AUV interaction with the physical world.”

Ghorbel, Rice mechanical engineering lecturer David Trevas, and Professor in the Practice, Electrical and Computer and Engineering Gary Woods mentored the team.

Last month Rice also held its 24th annual Rice Business Plan Competition, doling out more than $1.5 million in investment and cash prizes to the top teams. Click here to see what student-led startups took home awards.
The gift sets up a scholarship, an endowed chair, and a lecture series. Photo via UH.edu

University of Houston receives $6.5M to go toward supporting equity, social justice, and more

funding moves

A recent gift to the University of Houston will provide support to a couple colleges on campus, including an endowed chair, a scholarship, and a lecture series.

Thomas Michael Panos Family Estate donated $4.5 million — and was matched with an additional $2 million by the University's new "$100 Million Challenge" Aspire Fund. It's the first matched gift of the new fund. The gift includes $2 million to create the Panos Family Endowed Chair in Mechanical Engineering, $2 million to establish a scholarship endowment beginning in 2022 to support need- and merit-based scholarships for full-time undergraduate or graduate students across UH, and $500,000 to support "The Panos Family Endowed Lecture in Equity and Social Justice" in the College of Liberal Arts and Social Sciences.

"We are incredibly grateful for the generosity of the Thomas Michael Panos Family Estate. This significant gift will not only help fuel academic success through innovation and discovery, but will support our ability to recruit renowned faculty and expand thought leadership," says Paula Myrick Short, UH senior vice president for academic affairs and provost, in the release. "The additional support for an equity and social justice lecture series is an especially timely and important part of our efforts to increase visibility around these issues."

Thomas Michael Panos emigrated to Houston from Greece and only had a sixth-grade education. His sons — Mike and Gus Panos — both earned college degrees in engineering.

"They were the kind of people who would help anybody," says Scott Harbers, who lived next door to the Panos family decades ago in what is now Midtown Houston, in the release. "As a family of immigrants, I know they would appreciate the diversity of the student body at the University of Houston. They had a tremendous interest in education and equal rights. I'm hopeful that this gift will help advance the lives of students who need help to complete their studies."

The $100 Million Challenge initiative was established in fall of 2019 thanks to an anonymous $50 million donation to the school, and the campaign is set on inspiring another $50 million in support of four areas that will address issues with major societal impact: sustainable energy and energy security, resilient infrastructure and smart cities, population health, and global engagement. Donors who commit $2 million to go toward an endowed chair will have their gifts matched through the program.

"The '$100 Million Challenge' is a transformational initiative to propel our academic enterprise to unprecedented levels of distinction, and this first matching gift launches us," says Eloise Brice, vice president for university advancement, in the release. "The work and research being done at UH, and accelerated through the Challenge, will have a tremendous impact on the quality of life for all Houstonians."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

FDA greenlights Houston surgery robotics company's unique technology

headed to clinical trials

A Houston surgical robotics company has gotten a Investigational Device Exemption from the FDA to go forward with human trials.

This news allows EndoQuest Robotics to begin its Prospective Assessment of a Robotic-Assisted Device in Gastrointestinal Medicine (PARADIGM) study, which will be conducted at leading United States health care facilities, including Brigham and Women’s Hospital (Boston), Mayo Clinic (Scottsdale), Cleveland Clinic (Cleveland), AdventHealth (Orlando), and HCA Healthcare (Houston). The study will include surgeries on 50 subjects, who will hopefully begin to enroll in January.

“The foundational thesis is we're trying to make sure that the world's largest medical center is also the world's largest med tech innovation center,” Eduardo Fonseca, interim CEO of EndoQuest Robotics, tells InnovationMap.

His company is well on its way to helping to assure that, through making history of its own. EndoQuest is behind the world's first Flexible Robotic Surgical System, a technology that may one day transform surgery as we know it.

The idea to use these novel robots for surgery came from Dr. Todd Wilson, a surgeon at UTHealth Houston, who spent his medical education, residency, and fellowship at the institution.

“I had really focused in my practice on trying to do everything possible to improve outcomes for patients,” Wilson explains. “And there seemed to be a pretty good correlation that the smaller the incisions or the fewer incisions, the better patients would do.”

The stumbling block? The necessary small incisions are difficult for human surgeons to make with current technology. But UTHealth was part of the solution.

“Right there in the University of Texas was a microsurgical lab where they were focusing on trying to develop robotics, but the application was still a little bit fuzzy,” Wilson says.

Using their innovations to solve Wilson’s problem turned out to be the start of the company now known as EndoQuest Robotics.

The first indication for the system is for colon lesions. But in the future it could be used for practically any minimally invasive surgery (MIS). That means that the robots could help to perform anything from a tonsillectomy to cholecystectomy (gallbladder removal) to non-invasive colorectal procedures, should those lesions prove to be cancerous.

According to Fonseca, last year was the first on record that there were more MIS, including laparoscopic and robotic surgeries, than conventional ones in the U.S. The time is right to forge ahead with the flexible robotic surgical system. Days ago, the EndoQuest team announced that its Investigational Device Exemption (IDE) application for its pivotal colorectal clinical study was approved by the FDA.

“Our end point is a device that can be mass-manufactured and very safe for patients and has a short learning curve, so therefore, we intend to learn a lot during these trials that will inform our ultimate design,” says Fonseca.

He adds that it’s a “brilliant” group of engineers that has set EndQuest apart, including both teams in Houston and in South Korea.

“We can move twice as fast as anyone else,” jokes engineer Jiwon Choi.

Despite the extra brain power provided by the South Korea engineers, Fonseca says that EndoQuest’s beginnings are “as much of a Houston story as you could find.”

Founder bets on Houston to grow innovative corrosion detection technology

HOUSTON INNOVATORS PODCAST EPISODE 265

Despite having success in taking his technology from lab to commercialization, Anwar Sadek made the strategic decision to move his company, Corrolytics, from where it was founded in Ohio to Houston.

"Houston is the energy capital of the world. For the technology we are developing, it is the most strategic move for us to be in this ecosystem and in this city where all the energy companies are, where all the investors in the energy space are — and things are moving really fast in Houston in terms of energy transition and developing the current infrastructure," Sadek, co-founder and CEO of Corrolytics, says on the Houston Innovators Podcast.

And as big as a move as it was, it was worth it, Sadek says.

"It's been only a year that we've been here, but we've made the most developments, the most outreach to clients in this one last year."



The technology Sadek and his team have created is a tool to detect microbial corrosion — a major problem for industrial businesses, especially within the energy sector. Sadek describes the product as being similar to a testing hit a patient would use at home or in a clinic setting to decipher their current ailments.

Users of the Corrolytics test kit can input their pipeline sample in the field and receive results via Corrolytics software platform.

"This technology, most importantly, is noninvasive. It does not have to be installed into any pipelines or assets that the company currently has," Sadek explains. "To actually use it, you don't have to introduce new techniques or new processes in the current operations. It's a stand-alone, portable device."

Corrolytics approach is to help revolutionize and digitize microbial corrosion detection — both to improves efficiency and operational cost for industrial companies, but also to move the needle on a cleaner future for the energy industry.

"We are having an energy transition — that is a given. As we are bringing new energy, there will be growth of infrastructure to them. Every single path for the energy transition, corrosion will play a primary role as well," Sadek says.

Corrolytics hopes to work with new energies from the beginning to used the data they've collected to prevent corrosion in new facilities. However, the company's technology is already making an impact.

"Every year, there is about 1.2 gigaton of carbon footprint a year that is released into the environment that is associated with replacing corroded steel in general industries," Sadek says. "With Corrolytics, (industrial companies) have the ability to extend the life of their current infrastructure."

Sadek says his move to Houston has already paid off, and he cites one of the company's big wins was at the 2024 Houston Innovation Awards, where Corrolytics won two awards.

UH researchers secure $3.3M for AI-powered subsurface sensing system to revolutionize underground power lines

going under

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

------

This article originally ran on EnergyCapital.