The project was part of a year-long senior design capstone by six students, known as Team Bay-Max, in Rice's Oshman Engineering Design Kitchen. Photo by Jeff Fitlow/Rice University

A team of Rice University engineering students has developed a new way for underwater robots to move around, save power and work more efficiently and quietly.

The robot uses reversible hydrogen fuel cell-based buoyancy control devices that convert water into hydrogen and oxygen (and the reverse) using electricity. Traditional underwater robots use thrusters or large pumps and propellers to change and hold depth, which can be heavy, have higher costs and use more energy. The use of reversible hydrogen fuel cells with balloons, allows the new robot to smoothly adjust its depth with less energy usage, according to a statement from Rice.

The project was part of a year-long senior design capstone by six students, known as Team Bay-Max, in Rice's Oshman Engineering Design Kitchen.

The students—Andrew Bare, Spencer Darwall, Noah Elzner, Rafe Neathery, Ethan Peck and Dan Zislis— won second place in the Willy Revolution Award for Outstanding Innovation at the Huff OEDK Engineering Design Showcase held at the Ion last month.

“Having spent a year on it now and putting so much time into it, getting to see the result of all that work come together is really rewarding,” Peck said in the statement.

“With a project like this, integration was critical,” Zislis added. “Another takeaway for me is the importance of determining a clear scope for any given project. With this robot, we could have focused on a lot of different things. For instance, we could have worked on improving fuel cell efficiency or making a robotic arm. Instead, we chose to keep these other elements simple so as not to divert focus away from the main part, which is the buoyancy control device. This kind of decision-making process is not just part of good engineering, but it’s relevant with everything in life.”

Elzner, for instance, focused on the dashboard that the robot feeds information to as it collects data from different sensors. It displays core system information, real-time graphs of the robot’s location and a simulation of its relative orientation, according to the statement.

Darwall, took a " deep dive into control theory and learn(ed) new software" to incorporate the video game joystick that allows the robot to combine manual control with an automatic stabilizing algorithm.

The proof-of-concept robot has potential applications in environmental monitoring, oceanographic research, and military and industrial tasks, according to Rice.

The team based the project on an academic paper by Houston researchers that showed that fuel cell-enabled depth control could reduce autonomous underwater vehicles’ energy consumption by as much as 85 percent.

It was authored by Rice professor Fathi Ghorbel and members of the University of Houston's Zheng Chen lab.

“This collaborative research aims to develop tetherless continuum soft engines that utilize reversible proton exchange membrane fuel cells and water electrolyzers to drive volume-mass transformation," Ghorbel said in a statement. "Through this design project, the BayMax team proved the efficacy of this technology in AUV interaction with the physical world.”

Ghorbel, Rice mechanical engineering lecturer David Trevas, and Professor in the Practice, Electrical and Computer and Engineering Gary Woods mentored the team.

Last month Rice also held its 24th annual Rice Business Plan Competition, doling out more than $1.5 million in investment and cash prizes to the top teams. Click here to see what student-led startups took home awards.
The gift sets up a scholarship, an endowed chair, and a lecture series. Photo via UH.edu

University of Houston receives $6.5M to go toward supporting equity, social justice, and more

funding moves

A recent gift to the University of Houston will provide support to a couple colleges on campus, including an endowed chair, a scholarship, and a lecture series.

Thomas Michael Panos Family Estate donated $4.5 million — and was matched with an additional $2 million by the University's new "$100 Million Challenge" Aspire Fund. It's the first matched gift of the new fund. The gift includes $2 million to create the Panos Family Endowed Chair in Mechanical Engineering, $2 million to establish a scholarship endowment beginning in 2022 to support need- and merit-based scholarships for full-time undergraduate or graduate students across UH, and $500,000 to support "The Panos Family Endowed Lecture in Equity and Social Justice" in the College of Liberal Arts and Social Sciences.

"We are incredibly grateful for the generosity of the Thomas Michael Panos Family Estate. This significant gift will not only help fuel academic success through innovation and discovery, but will support our ability to recruit renowned faculty and expand thought leadership," says Paula Myrick Short, UH senior vice president for academic affairs and provost, in the release. "The additional support for an equity and social justice lecture series is an especially timely and important part of our efforts to increase visibility around these issues."

Thomas Michael Panos emigrated to Houston from Greece and only had a sixth-grade education. His sons — Mike and Gus Panos — both earned college degrees in engineering.

"They were the kind of people who would help anybody," says Scott Harbers, who lived next door to the Panos family decades ago in what is now Midtown Houston, in the release. "As a family of immigrants, I know they would appreciate the diversity of the student body at the University of Houston. They had a tremendous interest in education and equal rights. I'm hopeful that this gift will help advance the lives of students who need help to complete their studies."

The $100 Million Challenge initiative was established in fall of 2019 thanks to an anonymous $50 million donation to the school, and the campaign is set on inspiring another $50 million in support of four areas that will address issues with major societal impact: sustainable energy and energy security, resilient infrastructure and smart cities, population health, and global engagement. Donors who commit $2 million to go toward an endowed chair will have their gifts matched through the program.

"The '$100 Million Challenge' is a transformational initiative to propel our academic enterprise to unprecedented levels of distinction, and this first matching gift launches us," says Eloise Brice, vice president for university advancement, in the release. "The work and research being done at UH, and accelerated through the Challenge, will have a tremendous impact on the quality of life for all Houstonians."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston femtech co. debuts new lactation and wellness pods

mom pod

Houston-based femtech company Work&, previously known as Work&Mother, has introduced new products in recent months aimed at supporting working mothers and the overall health of all employees.

The company's new Lactation Pod and Hybrid Pod serve as dual-use lactation and wellness spaces to meet employer demand, the company shared in a news release. The compact pods offer flexible design options that can serve permanent offices and nearly all commercial spaces.

They feature a fully compliant lactation station while also offering wellness functionalities that can support meditation, mental health, telehealth and prayer. In line with Work&'s other spaces, the pods utilize the Work& scheduling platform, which prioritizes lactation bookings to help employers comply with the PUMP Act.

“This isn’t about perks,” Jules Lairson, Work& co-founder and COO, said in the release. “It’s about meeting people where they are—with dignity and intentional design. That includes the mother returning to work, the employee managing anxiety, and everyone in between.”

According to the company, several Fortune 500 companies are already using the pods, and Work& has plans to grow the products' reach.

Earlier this year, Work& introduced its first employee wellness space at MetroNational’s Memorial City Plazas, representing Work&'s shift to offer an array of holistic health and wellness solutions for landlords and tenants.

The company, founded in 2017 by Lairson and CEO Abbey Donnell, was initially focused on outfitting commercial buildings with lactation accommodations for working parents. While Work& still offers these services through its Work&Mother branch, the addition of its Work&Wellbeing arm allowed the company to also address the broader wellness needs of all employees.

The company rebranded as Work& earlier this year.

Rice biotech studio secures investment from Modi Ventures, adds founder to board

fresh funding

RBL LLC, which supports commercialization for ventures formed at the Rice University Biotech Launch Pad, has secured an investment from Houston-based Modi Ventures.

Additionally, RBL announced that it has named Sahir Ali, founder and general partner of Modi Ventures, to its board of directors.

Modi Ventures invests in biotech companies that are working to advance diagnostics, engineered therapeutics and AI-driven drug discovery. The firm has $134 million under management after closing an oversubscribed round this summer.

RBL launched in 2024 and is based out of Houston’s Texas Medical Center Helix Park. William McKeon, president and CEO of the TMC, previously called the launch of RBL a “critical step forward” for Houston’s life sciences ecosystem.

“RBL is dedicated to building companies focused on pioneering and intelligent bioelectronic therapeutics,” Ali said in a LinkedIn post. “This partnership strengthens the Houston biotech ecosystem and accelerates the transition of groundbreaking lab discoveries into impactful therapies.”

Ali will join board members like managing partner Paul Wotton, Rice bioengineering professor Omid Veiseh, scientist and partner at KdT Ventures Rima Chakrabarti, Rice alum John Jaggers, CEO of Arbor Biotechnologies Devyn Smith, and veteran executive in the life sciences sector James Watson.

Ali has led transformative work and built companies across AI, cloud computing and precision medicine. Ali also serves on the board of directors of the Drug Information Association, which helps to collaborate in drug, device and diagnostics developments.

“This investment by Modi Ventures will be instrumental to RBL’s growth as it reinforces confidence in our venture creation model and accelerates our ability to develop successful biotech startups,” Wotton said in the announcement. "Sahir’s addition to the board will also amplify this collaboration with Modi. His strategic counsel and deep understanding of field-defining technologies will be invaluable as we continue to grow and deliver on our mission.”