Mercury Data Science has taken a tool it originally developed for COVID-19 research and applied it into new areas of research and innovation. Photo via Getty Images

Last fall, Houston-based Mercury Data Science released an AI-driven app designed to help researchers unlock COVID-19-related information tucked into biomedical literature. The app simplified access to data about subjects like genes, proteins, drugs, and diseases.

Now, a year into the coronavirus pandemic, Mercury Data Science is applying this technology to areas like agricultural biotech, cancer therapeutics, and neuroscience. It's an innovation that arose from the pandemic but that promises broader, long-lasting benefits.

Angela Holmes, chief operating officer of Mercury Data Science, says the platform relies on an AI concept known as natural language processing (NLP) to mine scientific literature and deliver real-time results to researchers.

"We developed this NLP platform as a publicly available app to enable scientists to efficiently discover biological relationships contained in COVID research publications," Holmes says.

The platform:

  • Contains dictionaries with synonyms to identify things like genes and proteins that may go by various names in scientific literature.
  • Produces data visualizations of relationships among various biological functions.
  • Summarizes the most important data points on a given topic from an array of publications.
  • Depends on data architecture to automate how data is retrieved and processed.

In agricultural biotech, the platform enables researchers to sift through literature to dig up data about plant genetics, Holmes says. The lack of gene-naming standards in the world of plants complicates efforts to search data about plant genetics, she says.


Angela Holmes is the COO of MDS. Photo via mercuryds.com


The platform's ability to easily ferret out information about plant genetics "allows companies seeking gene-editing targets to make crops more nutritious and more sustainable as the climate changes to have a rapid way to de-risk their genomic analyses by quickly assessing what is already known versus what is unknown," Holmes says.

The platform allowed one of Mercury Data Science's agricultural biotech customers to comb through scientific literature about plant genetics to support targeted gene editing in a bid to improve crop yields.

In the field of cancer therapeutics and other areas of pharmaceuticals, the platform helps prioritize drug candidates, Holmes says. One of Mercury Data Science's customers used the platform to extract data from about 2 terabytes (or 2 trillion bytes) of information to evaluate drug candidates. The information included drug studies, clinical trials, and patents. Armed with that data, Mercury Data Science's cancer therapy client signed agreements with new pharmaceutical partners.

The platform also applies to the hunt for biomarkers in neuroscience, including disorders such as depression, anxiety, autism and multiple sclerosis. Data delivered through the platform helps bring new neurobehavioral therapeutics to market, Holmes says.

"An NLP platform to automatically process newly published literature for more insight on the search for digital biomarkers represents a great opportunity to accelerate research in this area," she says.

Mercury Data Science has experience in the field of digital biomarkers, including work for one customer to develop a voice and video platform to improve insights into patients with depression and anxiety in order to improve treatment of those conditions.

The new platform — initially developed as a tool to combat COVID-19 — falls under the startup's vast umbrella of artificial intelligence and data science. Founded in 2017, Mercury Data Science emerged because portfolio companies of the Houston-based Mercury Fund were seeking to get a better handle on AI and data science.

Last April, Angela Wilkins, founder, co-CEO and chief technology officer of Mercury Data Science, left the company to lead Rice University's Ken Kennedy Institute. Dan Watkins, co-founder and managing director of the Mercury Fund, remains at Mercury Data Science as CEO.

The Ken Kennedy Institute fosters collaborations in computing and data. Wilkins replaced Jan Odegard as executive director of the institute. Odegard now is senior director of industry and academic partnerships at The Ion, the Rice-led innovation hub.

Wilkins "is an academic at heart with considerable experience working with faculty and students, and an entrepreneur who has helped build a successful technology company," Lydia Kavraki, director of the Ken Kennedy Institute, said in a news release announcing Wilkins' new role. "Over her career, Angela has worked on data and computing problems in a number of disciplines, including engineering, life sciences, health care, agriculture, policy, technology, and energy."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.