Mercury Data Science has taken a tool it originally developed for COVID-19 research and applied it into new areas of research and innovation. Photo via Getty Images

Last fall, Houston-based Mercury Data Science released an AI-driven app designed to help researchers unlock COVID-19-related information tucked into biomedical literature. The app simplified access to data about subjects like genes, proteins, drugs, and diseases.

Now, a year into the coronavirus pandemic, Mercury Data Science is applying this technology to areas like agricultural biotech, cancer therapeutics, and neuroscience. It's an innovation that arose from the pandemic but that promises broader, long-lasting benefits.

Angela Holmes, chief operating officer of Mercury Data Science, says the platform relies on an AI concept known as natural language processing (NLP) to mine scientific literature and deliver real-time results to researchers.

"We developed this NLP platform as a publicly available app to enable scientists to efficiently discover biological relationships contained in COVID research publications," Holmes says.

The platform:

  • Contains dictionaries with synonyms to identify things like genes and proteins that may go by various names in scientific literature.
  • Produces data visualizations of relationships among various biological functions.
  • Summarizes the most important data points on a given topic from an array of publications.
  • Depends on data architecture to automate how data is retrieved and processed.

In agricultural biotech, the platform enables researchers to sift through literature to dig up data about plant genetics, Holmes says. The lack of gene-naming standards in the world of plants complicates efforts to search data about plant genetics, she says.


Angela Holmes is the COO of MDS. Photo via mercuryds.com


The platform's ability to easily ferret out information about plant genetics "allows companies seeking gene-editing targets to make crops more nutritious and more sustainable as the climate changes to have a rapid way to de-risk their genomic analyses by quickly assessing what is already known versus what is unknown," Holmes says.

The platform allowed one of Mercury Data Science's agricultural biotech customers to comb through scientific literature about plant genetics to support targeted gene editing in a bid to improve crop yields.

In the field of cancer therapeutics and other areas of pharmaceuticals, the platform helps prioritize drug candidates, Holmes says. One of Mercury Data Science's customers used the platform to extract data from about 2 terabytes (or 2 trillion bytes) of information to evaluate drug candidates. The information included drug studies, clinical trials, and patents. Armed with that data, Mercury Data Science's cancer therapy client signed agreements with new pharmaceutical partners.

The platform also applies to the hunt for biomarkers in neuroscience, including disorders such as depression, anxiety, autism and multiple sclerosis. Data delivered through the platform helps bring new neurobehavioral therapeutics to market, Holmes says.

"An NLP platform to automatically process newly published literature for more insight on the search for digital biomarkers represents a great opportunity to accelerate research in this area," she says.

Mercury Data Science has experience in the field of digital biomarkers, including work for one customer to develop a voice and video platform to improve insights into patients with depression and anxiety in order to improve treatment of those conditions.

The new platform — initially developed as a tool to combat COVID-19 — falls under the startup's vast umbrella of artificial intelligence and data science. Founded in 2017, Mercury Data Science emerged because portfolio companies of the Houston-based Mercury Fund were seeking to get a better handle on AI and data science.

Last April, Angela Wilkins, founder, co-CEO and chief technology officer of Mercury Data Science, left the company to lead Rice University's Ken Kennedy Institute. Dan Watkins, co-founder and managing director of the Mercury Fund, remains at Mercury Data Science as CEO.

The Ken Kennedy Institute fosters collaborations in computing and data. Wilkins replaced Jan Odegard as executive director of the institute. Odegard now is senior director of industry and academic partnerships at The Ion, the Rice-led innovation hub.

Wilkins "is an academic at heart with considerable experience working with faculty and students, and an entrepreneur who has helped build a successful technology company," Lydia Kavraki, director of the Ken Kennedy Institute, said in a news release announcing Wilkins' new role. "Over her career, Angela has worked on data and computing problems in a number of disciplines, including engineering, life sciences, health care, agriculture, policy, technology, and energy."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”