The new center is specifically designed to allow patients to be on the cutting edge of testing brand-new therapies that could save their lives.

Cancer treatment in Houston just became even more promising — and forward-thinking.

Phase 1 clinical trials are necessary to prove the efficacy in humans of treatments that have appeared promising in lab trials. In the name of cancer-fighting innovation, Baylor College of Medicine’s Dan L. Duncan Comprehensive Cancer Center has launched the Albert and Margaret Alkek Foundation Center for Experimental Therapeutics.

The new center is specifically designed to allow patients to be on the cutting edge of testing brand-new therapies that could save their lives.

“Clinical trials are critical for advancing the field of oncology and improving outcomes for cancer patients. Phase 1 trials are the first step in bringing innovative therapies to the clinic,” says Dr. Benjamin Musher, Barry S. Smith endowed professor at Baylor and medical director of medical oncology at the Duncan Cancer Center McNair Campus, in a news release. “Our new program will build on the success of previous phase 1 trials at Baylor and provide robust infrastructure to offer more clinical trial opportunities to our patients.”

The Alkek Foundation Center’s team practices across all specialty areas, allowing a broad swath of the Cancer Center’s patients to take part and to continue to receive care from the sub-specialty doctors they know and trust. And even if they aren’t already being treated at Baylor, physicians from outside Baylor can refer patients to the program through a smooth process.

“We are excited to offer novel research treatment options to our cancer patients at our state-of-the-art unit,” says Dr. Pavan Reddy, director of the Dan L Duncan Comprehensive Cancer Center and senior associate dean of cancer programs at Baylor. “This program will increase the scope of our research while giving the cancer patients in our community access to first in human and cutting-edge clinical trials.”

Patients will be treated at Duncan Cancer Center’s clinical home, Baylor St. Luke’s Medical Center’s O’Quinn Medical Tower at the McNair Campus. As interim dean of research and dean of the Graduate School of Biomedical Sciences at Baylor, Carolyn Smith says, with the new center, Baylor is “advancing medicine by taking innovations made in the lab and moving them to the bedside.”

The debut trial to take place at the center enrolled its first patient this month. It will test a novel therapy that targets a mutation commonly found in pancreatic and colorectal cancers.

“Phase 1 oncology clinical trials provide patients early access to cutting-edge therapeutics and immunotherapies that are not widely available. Patients in these trials are often selected because their tumors have a molecular feature that is targeted by these therapies,” says Dr. S. Gail Eckhardt, who is Baylor’s Albert and Margaret Alkek endowed chair and serves as associate dean for experimental therapeutics at Baylor and associate director of translational research at the Duncan Cancer Center.

Baylor College of Medicine's Lillie and Roy Cullen Tower is set to open in 2026. Rendering courtesy of SLAM Architecture

Houston health care institution secures $100M for expansion, shares renderings

fresh funding

Baylor College of Medicine has collected $100 million toward its $150 million fundraising goal for the college’s planned Lillie and Roy Cullen Tower.

The $100 million in gifts include:

  • A total of $30 million from The Cullen Foundation, The Cullen Trust for Health Care, and The Cullen Trust for Higher Education.
  • $12 million from the DeBakey Medical Foundation
  • $10 million from the Huffington Foundation
  • More than $45 million from members of Baylor’s Board of Trustees and other community donors, including the M.D. Anderson Foundation, the Albert and Margaret Alkek Foundation, and The Elkins Foundation.

“The Cullen Trust for Health Care is very honored to support this building along with The Cullen Foundation and The Cullen Trust for Higher Education,” Cullen Geiselman Muse, chair of The Cullen Trust for Health Care, says in a news release. “We cannot wait to see what new beginnings will come from inside the Lillie and Roy Cullen Tower.”

Baylor College of Medicine's Lillie and Roy Cullen TowerThe Baylor campus is next to Texas Medical Center’s Helix Park, a 37-acre project. Rendering courtesy of BCM

The Lillie and Roy Cullen Tower is set to open in 2026. The 503,000-square-foot tower is the first phase of Baylor’s planned Health Sciences Park, an 800,000-square-foot project that will feature medical education and research adjacent to patient care at Baylor Medicine and Baylor St. Luke’s Medical Center on the McNair Campus.

The Baylor campus is next to Texas Medical Center’s Helix Park, a 37-acre project that will support healthcare, life sciences, and business ventures. Baylor is the anchor tenant in the first building being constructed at Helix Park.

“To really change the future of health, we need a space that facilitates the future,” says Dr. Paul Klotman, president, CEO, and executive dean of Baylor. “We need to have a great building to recruit great talent. Having a place where our clinical programs are located, where our data scientists are, next to a biotech development center, and having our medical students all integrated into that environment will allow them to be ready in the future for where healthcare is going.”

In the 1940s, Lillie and Roy Cullen and the M.D. Anderson Foundation were instrumental in establishing the Texas Medical Center, which is now the world’s largest medical complex.

“Baylor is the place it is today because of philanthropy,” Klotman says. “The Cullen family, the M.D. Anderson Foundation, and the Albert and Margaret Alkek Foundation have been some of Baylor’s most devoted champions, which has enabled Baylor to mold generations of exceptional health sciences professionals. It is fitting that history is repeating itself with support for this state-of-the-art education building.”

The Cullen Foundation donated $30 million to the project. Rendering courtesy of BCM

One of Houston's biggest medical office projects — the $1.3 billion, 400,000-square-foot O’Quinn Medical Tower — is expected to deliver this year. Photo courtesy of Baylor College of Medicine

Report: Houston to see highest concentration of medical office project completions this year

opening soon

Medical office and life sciences projects are making a big splash in Houston’s commercial real estate sector in 2023.

The 42Floors commercial real estate website ranks five Houston-area medical office buildings among the country’s 20 largest medical office projects set to open this year. Meanwhile, 42Floors identifies two Houston developments among the 20 biggest U.S. life sciences projects on tap to debut in 2023.

Leading the list of the largest U.S. medical office buildings scheduled to be completed this year is the $1.3 billion, 400,000-square-foot O’Quinn Medical Tower. Set to open April 14 at the McNair Campus of Baylor St. Luke’s Medical Center, the outpatient facility will adjoin the McNair Hospital Tower, which opened in 2019.

The O’Quinn tower will serve as the new clinical home of the Dan L Duncan Comprehensive Cancer Center. The center is a federally designated facility for cancer care and research.

Highlights of the 12-story O’Quinn tower, southeast of the Texas Medical Center, include:

  • Ambulatory surgery center with 12 operating rooms and 10 endoscopy suites
  • 80-bay setup for infusion therapy
  • More than 70 exam rooms
  • More than 850 parking spaces

In all, five medical office properties in the Houston area made the 42Floors list, representing the highest concentration of major projects in any U.S. metro area that are scheduled to open this year. The four medical office properties joining the O’Quinn tower on the list are:

  • Houston Methodist Sugar Land Medical Office Building 4, 159,252 square feet
  • Kelsey-Seybold Springwoods Village Campus, 157,983 square feet
  • Kelsey-Seybold Ambulatory Surgery Center in Clear Lake, 116,000 square feet
  • 1715 Project in Friendswood, 107,000 square feet

A separate 42Floors list ranks Dynamic One, part of Baylor College of Medicine’s TMC Helix Park, as the second largest life sciences project in the U.S. set to come online this year. Houston’s TMC3 Collaborative Building lands at No. 19.

The 12-story Dynamic One project will feature lab space, offices, restaurants, and stores. It represents the first of four buildings planned for the 37-acre, five-million-square-foot TMC Helix Park, which is projected to generate an economic impact of $5.4 billion.

The 42Floors list puts the square footage of Dynamic One’s north tower at 365,000. Organizations involved in the project cite the square footage as 355,000.

The Baylor College of Medicine has signed up as Dynamic One’s anchor tenant. It will occupy 114,000 square feet of lab and office space.

“Baylor College of Medicine is a major force in life sciences discovery and commercialization at TMC. Their move to TMC Helix Park will serve as a catalyst for enhanced collaboration with TMC’s other esteemed Institutions, as well as with industry leaders from around the world,” Bill McKeon, president and CEO of TMC, says in a news release.

Also located at TMC Helix Park, the four-story TMC3 Collaborative Building will span 250,000 square feet. It will contain research facilities for MD Anderson Cancer Center, the Texas A&M University Health Science Center, the University of Texas Health Science Center at Houston, and TMC.

In addition, the TMC3 Collaborative Building will house life sciences companies, the TMC Data Collaborative, the TMC Venture Fund, the Braidwell hedge fund, and venture capital and private equity firms.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.