March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Early-stage cell therapy startup March Biosciences has partnered with CTMC. Photo via march.bio

Cancer-fighting startup partners with Houston cell therapy accelerator

marching on

When it came time to name their cell therapy startup, Houston life science innovators simply had to look to their calendar.

“I would argue that March is the best month in Houston,” Sarah Hein tells InnovationMap. “We started talking about putting this company together during COVID, so we were outside a lot. And we actually got together in March.”

That’s why the CEO and her co-founders Max Mamonkin and Malcolm Brenner decided to name their company March Biosciences.

It's a fresh, unstuffy name for a startup that has an innovative take on cancer immunotherapy. Their lead asset is an advanced cellular therapy known as MB-105, an autologous CD5 CAR T cell therapy. For patients with T-cell lymphoma and leukemia who have failed all currently available lines of therapy, the prognosis is understandably extremely poor. But in a phase one study, MB-105 has been proven to safely treat those patients. The phase two study is expected to begin in the first half of 2024.

Hein met Mamonkin at the TMC Accelerator for Cancer Therapeutics (ACT), at which the alumna of Resonant Therapeutics and Courier Therapeutics was an entrepreneur in residence.

“It's a perfect example of the opportunities here in Houston where you can go from bench to bedside, essentially, in the same institution. And Baylor has been particularly good at that because of the Center for Cell and Gene Therapy,” says Hein.

The serial entrepreneur first came to Houston as a PhD student in molecular and cellular biology at Baylor College of Medicine, but during her studies she became excited by the startup ecosystem in her new hometown. After earning her degree, she became a venture fellow at the Mercury Fund. Her experience in both science and business made her an ideal candidate to take March Biosciences to the next level.

In September, the company announced that it formed a strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience.

“Our unique risk-sharing model allows us to collaborate with organizations like March Biosciences to accelerate the development and manufacture of innovative cell therapies, like MB-105, and bring them into the clinic with a consistent and scalable manufacturing process,” said CTMC’s CEO, Jason Bock in a press release.

The partnership “has allowed us to move really quickly,” Hein says.

That’s because what CTMC does uniquely well is take early stage companies like March Biosciences and advance them to a state that’s ready for manufacturing in a short time, around 18 months, says Hein.

According to Hein, March Biosciences’ success is a testament to Houston and its world-class medical center.

“It’s a great example of the opportunities you see here in Houston, where we have a technology that was developed by brilliant scientists here in Houston and we can pull together the resources that we need to take it to the next level,” Hein says. "Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

The Texas Medical Center's Innovation Institute named 15 Texas companies to its new cancer-focused accelerator program. Photo courtesy of TMCx

TMC cancer therapeutic accelerator names inaugural cohort

cancer innovation

The Texas Medical Center named 15 groundbreaking researchers and companies to its inaugural class of the Accelerator for Cancer Therapeutics on Thursday. All hail from the Lone Star State.

The ACT program is the only accelerator focused on cancer treatment at the earliest stages of commercialization, thanks to a $5 million grant from the Cancer Prevention and Research Institute of Texas awarded to the TMC in the fall of 2019.

The nine-month program kicked-off at the end of January and will be run by TMC Innovation, according to a release from the TMC. It aims to provide the class with resources to help their oncology biotech projects reach new milestones, including even commercialization.

The inaugural cohort is made up of companies and researchers exploring immunotherapy, cell therapy, targeted therapy, cancer pain, and drug platforms. The group is split about evenly between companies and academic researchers. The group of Texans includes:

  • Raptamer Discovery Group
  • IDA Therapeutics
  • Elbrus Therapeutics
  • Parthenon Therapeutics
  • Lokesh Battula
  • Aumeta
  • Autoimmunity Biologic Solutions
  • Max Mamonkin
  • Qing Yi
  • Astero Alta
  • TEZCAT Laboratories
  • Anil Sood
  • Coactigon
  • Xiadong Cheng
  • IonTx

At the end of the nine months, the class will present an integrated strategic plan and at least one grant submission. They will also have the opportunity to pitch investors and corporations.

The class will also gain support in grant writing, chemistry, and funding opportunities, as well as mentorship.

"As the past year has shown, the pace of scientific discovery can be blistering," says Tom Luby, director of TMC Innovation. "At the same time, successfully translating research into effective therapies available to patients requires a mix of business, technical and regulatory skills that may not typically be available to researchers.

"By linking the participants with mentors who can both advance their scientific work and support the technical needs, we expect this first class of ACT participants will make a meaningful difference for cancer patients in Texas and beyond."

TMCx, which is also run by TMC Innovation, recently announced seven health tech companies that were selected to its 2021 class of its health tech accelerator.

Broader in scope that the ACT accelerator, the TMCx startups focus on an array of subject matters from heart health to artificial intelligence to extremity rehabilitation.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.