March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Early-stage cell therapy startup March Biosciences has partnered with CTMC. Photo via march.bio

Cancer-fighting startup partners with Houston cell therapy accelerator

marching on

When it came time to name their cell therapy startup, Houston life science innovators simply had to look to their calendar.

“I would argue that March is the best month in Houston,” Sarah Hein tells InnovationMap. “We started talking about putting this company together during COVID, so we were outside a lot. And we actually got together in March.”

That’s why the CEO and her co-founders Max Mamonkin and Malcolm Brenner decided to name their company March Biosciences.

It's a fresh, unstuffy name for a startup that has an innovative take on cancer immunotherapy. Their lead asset is an advanced cellular therapy known as MB-105, an autologous CD5 CAR T cell therapy. For patients with T-cell lymphoma and leukemia who have failed all currently available lines of therapy, the prognosis is understandably extremely poor. But in a phase one study, MB-105 has been proven to safely treat those patients. The phase two study is expected to begin in the first half of 2024.

Hein met Mamonkin at the TMC Accelerator for Cancer Therapeutics (ACT), at which the alumna of Resonant Therapeutics and Courier Therapeutics was an entrepreneur in residence.

“It's a perfect example of the opportunities here in Houston where you can go from bench to bedside, essentially, in the same institution. And Baylor has been particularly good at that because of the Center for Cell and Gene Therapy,” says Hein.

The serial entrepreneur first came to Houston as a PhD student in molecular and cellular biology at Baylor College of Medicine, but during her studies she became excited by the startup ecosystem in her new hometown. After earning her degree, she became a venture fellow at the Mercury Fund. Her experience in both science and business made her an ideal candidate to take March Biosciences to the next level.

In September, the company announced that it formed a strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience.

“Our unique risk-sharing model allows us to collaborate with organizations like March Biosciences to accelerate the development and manufacture of innovative cell therapies, like MB-105, and bring them into the clinic with a consistent and scalable manufacturing process,” said CTMC’s CEO, Jason Bock in a press release.

The partnership “has allowed us to move really quickly,” Hein says.

That’s because what CTMC does uniquely well is take early stage companies like March Biosciences and advance them to a state that’s ready for manufacturing in a short time, around 18 months, says Hein.

According to Hein, March Biosciences’ success is a testament to Houston and its world-class medical center.

“It’s a great example of the opportunities you see here in Houston, where we have a technology that was developed by brilliant scientists here in Houston and we can pull together the resources that we need to take it to the next level,” Hein says. "Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

The Texas Medical Center's Innovation Institute named 15 Texas companies to its new cancer-focused accelerator program. Photo courtesy of TMCx

TMC cancer therapeutic accelerator names inaugural cohort

cancer innovation

The Texas Medical Center named 15 groundbreaking researchers and companies to its inaugural class of the Accelerator for Cancer Therapeutics on Thursday. All hail from the Lone Star State.

The ACT program is the only accelerator focused on cancer treatment at the earliest stages of commercialization, thanks to a $5 million grant from the Cancer Prevention and Research Institute of Texas awarded to the TMC in the fall of 2019.

The nine-month program kicked-off at the end of January and will be run by TMC Innovation, according to a release from the TMC. It aims to provide the class with resources to help their oncology biotech projects reach new milestones, including even commercialization.

The inaugural cohort is made up of companies and researchers exploring immunotherapy, cell therapy, targeted therapy, cancer pain, and drug platforms. The group is split about evenly between companies and academic researchers. The group of Texans includes:

  • Raptamer Discovery Group
  • IDA Therapeutics
  • Elbrus Therapeutics
  • Parthenon Therapeutics
  • Lokesh Battula
  • Aumeta
  • Autoimmunity Biologic Solutions
  • Max Mamonkin
  • Qing Yi
  • Astero Alta
  • TEZCAT Laboratories
  • Anil Sood
  • Coactigon
  • Xiadong Cheng
  • IonTx

At the end of the nine months, the class will present an integrated strategic plan and at least one grant submission. They will also have the opportunity to pitch investors and corporations.

The class will also gain support in grant writing, chemistry, and funding opportunities, as well as mentorship.

"As the past year has shown, the pace of scientific discovery can be blistering," says Tom Luby, director of TMC Innovation. "At the same time, successfully translating research into effective therapies available to patients requires a mix of business, technical and regulatory skills that may not typically be available to researchers.

"By linking the participants with mentors who can both advance their scientific work and support the technical needs, we expect this first class of ACT participants will make a meaningful difference for cancer patients in Texas and beyond."

TMCx, which is also run by TMC Innovation, recently announced seven health tech companies that were selected to its 2021 class of its health tech accelerator.

Broader in scope that the ACT accelerator, the TMCx startups focus on an array of subject matters from heart health to artificial intelligence to extremity rehabilitation.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston humanoid robotics startup inks new deal to deploy its rugged robots

big deal

Houston-based Persona AI announced the expansion of its operations at the Ion and a major milestone in deploying its humanoid robots.

The company will establish a state-of-the-art development center in the prominent corner suite on the first floor of the Ion, and is slated to begin expansion in June.

“We chose the Ion because it’s more than just a building — it’s a thriving innovation ecosystem,” CEO Nicolaus Radford said in a news release. “This is where Houston’s tech future is being built. It’s a convergence point for the people, energy, and ideas that power our mission to redefine human-machine collaboration. For an industrial, AI-driven robotics company, there’s no better place to scale than in the heart of Houston.”

Persona AI’s new development center will be located in the suite utilized by the Ion Prototyping Lab, managed by TXRX Labs. The IPL will transition its operations to the expanded TXRX facility in the East End Maker Hub, which will allow the lab to grow its team and meet increased demand.

At the start of the year, Persona AI closed $25 million in pre-seed funding. Earlier this month, the company announced a memorandum of understanding with HD Korea Shipbuilding & Offshore Engineering, HD Hyundai Robotic, and Korean manufacturing firm Vazil Company to create and deploy humanoid robots for complex welding tasks in shipyards.

The project will deliver prototype humanoids by the end of 2026, with field testing and full commercial deployment scheduled to begin in 2027.

"As heavy industry faces growing labor constraints—especially in high-risk trades like welding—the need for rugged, autonomous humanoid robots is more urgent than ever,” Radford added in a separate statement. “This partnership with HD Hyundai and Vazil is more than symbolic—deploying to the shipyard is one of the largest real-world proving grounds for Persona's tough, humanoid robots.”