A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Ten Rice University energy innovators have been selected for the Chevron Energy Graduate Fellowship. Photo by of Jeff Fitlow/Rice University

Chevron names inaugural cohort of Houston energy innovators

research ready

Anew program from Rice University and Chevron has named its inaugural cohort.

Funded by Chevron, the Chevron Energy Graduate Fellowship will provide $10,000 each to 10 Rice graduate students for the current academic year, which supports research in energy-related fields.

The Rice Sustainability Institute (RSI) hosted the event to introduce the inaugural cohort of the Rice Chevron Energy Graduate Fellowship at the Ralph S. O’Connor Building for Engineering and Science. Director of the RSI and the W. Maurice Ewing Professor in Earth, Environmental and Planetary Sciences, Carrie Masiello presented each fellow with a certificate during the ceremony.

“This fellowship supports students working on a wide range of topics related to scalable innovations in energy production that will lead to the reduction of carbon dioxide emissions,” Masiello says in a news release. “It’s important that we recognize the importance of intellectual diversity to the kind of problem-solving we have to do as we accomplish the energy transition.”

The work of the students focuses on creating "real-world, scalable solutions to transform the energy landscape,” per the Rice release. Recipients of the fellowship will research solutions to energy challenges that include producing eco-friendly hydrogen alternatives to fossil fuels and recycling lithium-ion batteries.

Some of the fellows' work will focus on renewable fuels and carbon-capture technologies, biological systems to sequester carbon dioxide, and the potential of soil organic carbon sequestration on agricultural land if we remove the additionality constraint. Xi Chen, a doctoral student in materials science and nanoengineering, will use microwave-assisted techniques to recycle lithium-ion batteries sustainably.

Rice President Reginald DesRoches began the event by stressing the importance of collaboration. Ramamoorthy Ramesh, executive vice president for research at Rice, echoed that statement appearing via Zoom to applaud the efforts of doing what is right for the planet and having a partner in Chevron.

“I’m excited to support emerging leaders like you all in this room, who are focused on scalable, innovative solutions because the world needs them,” Chris Powers, vice president of carbon capture, utilization and storage and emerging at Chevron New Energies and a Rice alum, says at the event. “Innovation and collaboration across sectors and borders will be key to unlocking the full potential of lower carbon energies, and it’s groups like you, our newest Chevron Fellows, that can help move the needle when it comes to translating, or evolving, the energy landscape for the future.”

To see a full list of fellows, click here.

------

This article originally ran on EnergyCapital.

The Rice team's process is up to 10 times more effective than existing lithium-ion battery recycling. Photo by Gustavo Raskosky/Rice University

Houston scientists discover breakthrough process for lithium-ion battery recycling

future of EVs

With the rise of electric vehicles, every ounce of lithium in lithium-ion batteries is precious. A team of scientists from Rice University has figured out a way to retrieve as much as 50 percent of the material in used battery cathodes in as little as 30 seconds.

Researchers at Rice University’s Nanomaterials Laboratory led by Department of Materials Science and NanoEngineering Chair Pulickel Ajayan released the findings a new study published in Advanced Functional Materials. Their work shows that the process overcomes a “bottleneck” in lithium-ion battery recycling technology. The researchers described a “rapid, efficient and environmentally friendly method for selective lithium recovery using microwave radiation and a readily biodegradable solvent,” according to a news release.

Past recycling methods have involved harsh acids, and alternative eco-friendly solvents like deep eutectic solvents (DESs) at times have not been as efficient and economically viable. Current recycling methods recover less than 5 percent of lithium, which is due to contamination and loss during the process.

In order to leach other metals like cobalt or nickel, both the choline chloride and the ethylene glycol have to be involved in the process, according to the researchers at Rice. The researchers submerged the battery waste material in the solvent and blasted it with microwave radiation since they knew that of the two substances only choline chloride is good at absorbing microwaves.

Microwave-assisted heating can achieve similar efficiencies like traditional oil bath heating almost 100 times faster. Using the microwave-based process, Rice found that it took 15 minutes to leach 87 percent of the lithium, which differs from the 12 hours needed to obtain the same recovery rate via oil bath heating.

“This method not only enhances the recovery rate but also minimizes environmental impact, which makes it a promising step toward deploying DES-based recycling systems at scale for selective metal recovery,” Ajayan says in the release.

Due to rise in EV production, the lithium-ion battery global market is expected to grow by over 23 percent in the next eight years, and was previously valued at over $65 billion in 2023.

“We’ve seen a colossal growth in LIB use in recent years, which inevitably raises concerns as to the availability of critical metals like lithium, cobalt and nickel that are used in the cathodes,” the study's co-author, Sohini Bhattacharyya, adds. “It’s therefore really important to recycle spent LIBs to recover these metals.”

------

This article originally ran on EnergyCapital.

NanoTech's Chief Commercial Officer Carrie Horazeck and Co-Founder and CEO Mike Francis join the Houston Innovators Podcast to celebrate the nationwide launch of their roof coating product. Photo via LinkedIn

Houston material science company strategically rolls out flagship product nationwide

houston innovators podcast episode 174

A Houston startup is celebrating its nationwide launch of its flagship product that coats roofs to reduce energy waste.

NanoTech's Nano Shield Cool Roof Coat is a unique product that can be added onto roofs to reduce energy waste on buildings. Co-founder and CEO Mike Francis and Chief Commercial Officer Carrie Horazeck joined the Houston Innovators Podcast to share more details about the product.

"It's just a coating that can go on top of existing structure — any type of commercial roof," Horazeck says on the show. "We have a pretty good amount of data from 2022 showcasing that we can reduce HVAC consumption within the building by about 30 to 40 percent.

"Our clients really see a immediate benefit in their energy bill, and, of course, if you reduce the HVAC consumption, that automatically translates to a decrease in your scope one emissions," she continues.

Now, NanoTech is playing in the climatetech materials space, the duo explains, and is able to offer clients the opportunity of sustainability with a return — and provide the data for them to prove it.

When deciding how to roll out the product nationally, Francis and Horazeck decided to create a partner enablement program of around 20 companies rather than going with one big distributor.

"We wanted to make sure we developed really strong relationships with our partners and brought on partners that really believed in our vision and understood what we're trying to do at NanoTech — not just with the roof coating, but the whole vision of our company," Horazecks says, explaining that NanoTech has 12 partner companies already and is actively interviewing for the last eight spots.

The roof coating is just the beginning, Francis and Horazeck say about the growing company. NanoTech, which also has a fireproofing product that can protect against fires of up to 1,800 degree Celcius temperatures, also is working on a clear coating product for windows and even solar panels.

"We have the technologies — we're filing multiple patents almost every month to enter different areas of the green building and fireproofing spaces. We're working with more than 40 Fortune 500 companies — things are really clicking," Francis says on the show. "What I think is the next period in our company history is hiring the best talent we can possibly find."

Francis and Horazeck share more about the future of NanoTech on the podcast, and each share their thoughts on the vast opportunities in Houston's networking community and innovation ecosystem. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 UH projects named finalists for $50M fund to shape future of Gulf Coast

Looking to the Future

Two University of Houston science projects have been selected as finalists for the Gulf Futures Challenge, which will award a total of $50 million to develop ideas that help benefit the Gulf Coast.

Sponsored by the National Academies of Science, Engineering and Medicine’s Gulf Coast Research Program and Lever for Change, the competition is designed to spark innovation around problems in the Gulf Coast, such as rising sea levels, pollution, energy security, and community resiliency. The two UH projects beat out 162 entries from organizations based in Alabama, Florida, Louisiana, Mississippi, and Texas.

“Being named a finalist for this highly competitive grant underscores the University of Houston’s role as a leading research institution committed to addressing the most pressing challenges facing our region,” said Claudia Neuhauser, vice president for research at UH.

“This opportunity affirms the strength of our faculty and researchers and highlights UH’s capacity to deliver innovative solutions that will ensure the long-term stability and resilience of the Gulf Coast.”

One project, spearheaded by the UH Repurposing Offshore Infrastructure for Continued Energy (ROICE) program, is studying ways to use decommissioned oil rig platforms in the Gulf of Mexico as both clean energy hydrogen power generators as well a marine habitats. There are currently thousands of such platforms in the Gulf.

The other project involves the innovative recycling of wind turbines into seawall and coastal habitats. Broken and abandoned wind turbine blades have traditionally been thought to be non-recyclable and end up taking up incredible space in landfills. Headed by a partnership between UH, Tulane University, the University of Texas Health Science Center at Houston, the city of Galveston and other organizations, this initiative could vastly reduce the waste associated with wind farm technology.

wind turbine recycled for Gulf Coast seawall. Wind turbines would be repurposed into seawalls and more. Courtesy rendering

"Coastal communities face escalating threats from climate change — land erosion, structural corrosion, property damage and negative health impacts,” said Gangbing Song, Moores Professor of Mechanical and Aerospace Engineering at UH and the lead investigator for both projects.

“Leveraging the durability and anti-corrosive properties of these of decommissioned wind turbine blades, we will build coastal structures, improve green spaces and advance the resilience and health of Gulf Coast communities through integrated research, education and outreach.”

The two projects have received a development grant of $300,000 as a prize for making it to the finals. When the winner are announced in early 2026, two of the projects will net $20 million each to bring their vision to life, with the rest earning a consolation prize of $875,000, in additional project support.

In the event that UH doesn't grab the grand prize, the school's scientific innovation will earn a guaranteed $1.75 million for the betterment of the Gulf Coast.

---

This article originally appeared on CultureMap.com.

Kids, kicks and connectivity: Xfinity makes soccer a shared experience

The Beautiful Game

For soccer mom Lana Chase, weekends were a whirlwind of cleats, carpooling, and cheering from the sidelines. Now that her daughter Miah graduated high school in May, the Chase Family’s love for the game hasn't stopped. It's shifted to their living room, where Comcast’s new Xfinity streaming platform brings the global game home.

“We’re a soccer family through and through,” says Chase. “Miah played soccer from about age 8 until 16, and we love the World Cup! Xfinity makes it easy for all of us to watch what we love together.”

One platform, every goal

Xfinity's new World Soccer Ticket package eliminates the chaos of juggling apps, subscriptions, or subpar streams. Families can now enjoy more than 1,500 matches from across the globe.

With parental controls, age-appropriate content, and smart recommendations, Xfinity turns soccer into family-friendly entertainment. Whether it’s a weekend watch party or a quiet school night, the platform adapts to every household’s rhythm.

“Figuring out where to watch your favorite team or match is often a painful game of chance. Now, with World Soccer Ticket, there’s no better way to watch the beautiful game than with Xfinity,” says Jon Gieselman, chief growth officer for Comcast's connectivity & platforms. “It’s easy, we did the work for our customers and pulled together the most coveted leagues and tournaments – from Premier League, LALIGA and Champions League to the World Cup – and put them in one place. We added some magic to the experience, with innovations like Multiview, 4K, and Sports Zone all easily accessible with one simple click or voice command.”

World Cup in Houston

With the 2026 World Cup on the horizon, the timing couldn't have been better. The world tournament will be the largest Spanish-language coverage ever offered by Telemundo, powered by Comcast NBCUniversal's technology, storytelling, and scale.

Telemundo and Peacock hold the exclusive Spanish language rights to "el Mundial," including all 104 matches streaming live on Peacock, with 92 matches airing on Telemundo and 12 on Universo. Live crews will cover every event in all 16 host cities, including Houston.

Xfinity customers will have access to pregame, halftime, and postgame coverage with unprecedented immersive experiences. The 2026 World Cup will be the most exciting event of the summer.

"We know other soccer families who watch matches with their little brothers and sisters. It’s not just a game, it’s family time. It's an even bigger deal with the tournament being just down the road in Houston next year,” Chase adds.

Comcast’s AI-powered platform personalizes the viewing experience, recommending matches and highlights based on each family member’s preferences.

World Soccer Ticket is available for an all-in monthly price of $85. It includes nearly 60 broadcast, cable news, and English- and Spanish-language sports channels, and a subscription to Peacock Premium so customers can enjoy a huge collection of movies, shows, news, and other live sports alongside all their favorite soccer programming.

Subscribe to World Soccer Ticket here.

Houston digital health platform Koda closes $7 million funding round

fresh funding

Houston-based digital advance care planning company Koda Health has closed an oversubscribed $7 million series A funding round.

The round, led by Evidenced, with participation from Mudita Venture Partners, Techstars and Texas Medical Center, will allow the company to scale operations and expand engineering, clinical strategy and customer success, according to a news release.

“This funding allows us to create more goals-of-care product lines, expand our national footprint, and bring goal-concordant care to millions more patients and families," Tatiana Fofanova, co-founder and CEO of Koda Health, said in the release.

Koda Health, which was born out of the TMC's Biodesign Fellowship in 2020, has seen major growth this year and said it now supports more than 1 million patients nationwide. The company integrated its end-of-life care planning platform with Dallas-based Guidehealth in April and with Epic Systems in July. Users of Epic's popular Mychart system and Guidehealth's clinically integrated networks can now document and share their care preferences, goals and advance directives for health systems using Koda Health's platform. It also has partnerships with Cigna, Privia and Memorial Hermann.

The company shared that the recent series A "marks a pivotal moment," as it has secured investments from influential leaders in the healthcare and venture capital space.

“Koda is the only company combining technology and service to deliver comprehensive solutions that help health plans, providers, and health systems scale goals-aligned care. With satisfied customers expanding their partnerships and policy shifts reinforcing the need for patient-centered care that also contains costs, we couldn’t be more excited to support the Koda team and their vision,” Sean Glass, managing partner at Evidenced, said in the release.

According to the company, a recent peer-reviewed study with Houston Methodist ACO showed that the platform can have a major impact on palliative care results and costs. The findings showed:

  • 79 percent reduction in terminal hospitalizations
  • 20 percent decrease in inpatient length of stay
  • 51 percent increase in hospice use among decedents
  • Nearly $9,000 in average savings per patient

“Patients long for clarity, families deserve peace of mind, and providers demand ease of use,” Dr. Desh Mohan, chief medical officer of Koda Health, added in the release. “At Koda, we make it possible to deliver all three — transforming Advance Care Planning into a compassionate, ongoing dialogue that honors patients and supports families every step of the way.”

Koda Health also closed an oversubscribed seed round for an undisclosed amount last year, with investments from AARP, Memorial Hermann Health System and the Texas Medical Center Venture Fund. Read more here.