UHD's science building has received funding from a nonprofit affiliate of Green Mountain Energy to install green energy technology. Courtesy of NRG

The University of Houston-Downtown has gotten some green to make its new College of Sciences & Technology Building even more green.

The Green Mountain Energy Sun Club, a nonprofit affiliated with the Green Mountain Energy utility provider, has pledged more than $250,000 to UHD for installation of solar panels at the building, as well as the purchase of photosynthesis equipment.

Akif Uzman, dean of UHD's College of Sciences & Technology, says in a release that the Green Mountain Energy Sun Club gift propels "our drive to show students and our local community our commitment to energy conservation and sustainable energy practices."

By the spring of 2020, UHD will install a 54-panel, 16.7-kilowatt, off-grid solar system that will help power two environmental science teaching labs in the College of Sciences & Technology Building. One of the labs, the Green Mountain Energy Sun Club Environmental Science Lab, will host classes by next year's spring semester.

"Our mission is to change the way power is made, and we share UHD's dedication to renewable energy, environmental education, and reducing carbon emissions," Mark Parsons, vice president and general manager of Houston-based Green Mountain Energy, says in a release.

Houston-based NRG Energy owns Green Mountain Energy.

Donations to the Sun Club come from Green Mountain Energy and its customers and employees. Since 1997, Green Mountain Energy has promoted energy efficiency, conservation, and environmental stewardship.

The Sun Club gift also will help buy a portable photosynthesis system. Michael Tobin, associate professor of biology, says the equipment will take measurements of plants in courses such as Plant Biology Laboratory, General Ecology Laboratory, and Environmental Lab and Field Studies. In addition, it will be used by students conducting faculty-guided research projects.

"A research-grade instrument to make photosynthesis and water use measurements will enhance students' research experiences and increase the likelihood that their project results can be published in a peer-reviewed scientific journal," Tobin says in a release.

UHD opened the College of Sciences & Technology Building in August. It's the first University of Houston System building constructed to meet LEED Gold standards, reflecting a commitment to sustainability features such as energy-efficient lighting, recycled construction materials, and "smart" design components.

Spanning 105,000 square feet, the College of Sciences & Technology Building contains nearly 30 labs for teaching and research, as well as classrooms, meeting and study spaces, and a café. UHD envisions the building will be a "model for sustainability in Houston."

Environmental highlights of the building include a 6,000-gallon cistern that provides water for the outdoor urban gardens, and the addition of native grasses in the surrounding landscape to create a micro-pocket prairie and, in effect, an outdoor classroom.

Aside from classes and resources for students and faculty in biology, biotechnology, biological and physical sciences, and chemistry, the building houses UHD's Center for Urban Agriculture & Sustainability.

The center is "a game changer for UHD initiatives and scholarly activities centered on sustainability," Lisa Morano, director of the Center for Urban Agriculture & Sustainability, says in a release. "It also serves as an example of how planners and architects can incorporate environmentally sound decisions in the design and construction of academic facilities."

Juan Sánchez Muñoz, president of UHD, says the College of Sciences & Technology Building is a hub for academic exploration and a catalyst for community collaboration.

"Its labs and learning spaces will elevate UHD's ability to prepare the next generation of Houston's scientists and innovators. The facility also will serve as a place where Houstonians can gather to address issues affecting our city and to learn how UHD is leading positive change in the region," Muñoz says in a release. "It's a major addition to our campus and an incredible asset to Houston."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”