Rice University's new Bachelor of Science in AI will be one of only a few in the country. Photo via Getty Images.

Rice University announced this month that it plans to introduce a Bachelor of Science in AI in the fall 2025 semester.

The new degree program will be part of the university's department of computer science in the George R. Brown School of Engineering and Computing and is one of only a few like it in the country. It aims to focus on "responsible and interdisciplinary approaches to AI," according to a news release from the university.

“We are in a moment of rapid transformation driven by AI, and Rice is committed to preparing students not just to participate in that future but to shape it responsibly,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, said in the release. “This new major builds on our strengths in computing and education and is a vital part of our broader vision to lead in ethical AI and deliver real-world solutions across health, sustainability and resilient communities.”

John Greiner, an assistant teaching professor of computer science in Rice's online Master of Computer Science program, will serve as the new program's director. Vicente Ordóñez-Román, an associate professor of computer science, was also instrumental in developing and approving the new major.

Until now, Rice students could study AI through elective courses and an advanced degree. The new bachelor's degree program opens up deeper learning opportunities to undergrads by blending traditional engineering and math requirements with other courses on ethics and philosophy as they relate to AI.

“With the major, we’re really setting out a curriculum that makes sense as a whole,” Greiner said in the release. “We are not simply taking a collection of courses that have been created already and putting a new wrapper around them. We’re actually creating a brand new curriculum. Most of the required courses are brand new courses designed for this major.”

Students in the program will also benefit from resources through Rice’s growing AI ecosystem, like the Ken Kennedy Institute, which focuses on AI solutions and ethical AI. The university also opened its new AI-focused "innovation factory," Rice Nexus, earlier this year.

“We have been building expertise in artificial intelligence,” Ordóñez-Román added in the release. “There are people working here on natural language processing, information retrieval systems for machine learning, more theoretical machine learning, quantum machine learning. We have a lot of expertise in these areas, and I think we’re trying to leverage that strength we’re building.”

Photo by Jasmin Merdan/Getty

Mastering control room management for smoother critical infrastructure operations

Up to Date

Control room management (CRM) systems play an integral role in ensuring the safe and efficient remote operations of automated processes for the world's most critical infrastructures (CI). If anything goes wrong with these CIs, the risks are major: loss of life or catastrophic environmental disasters. For this reason, rigorous regulatory requirements are crucial.

CRM systems give operators the ability to automate and take control of CI processes, giving operators situational awareness and real-time visibility of remote assets. This minimizes the need for manual work and inspection, and scales a company's ability to safely manage many assets over a large geographical area from one control room.

Most CI have to handle hazardous material in some, if not all, of their operational areas. Though different by industry, regulations and oversight are extremely necessary.

ICS (Industrial Control Systems) and CRM tools are key components of real-time monitoring for advanced warning and emergency alarming. The combination of a “green, amber, red” alert on the screen of an operator's control console will prompt them to respond, and potentially lead to following emergency shut-down response procedures. Training and testing of the control systems and their related standards, procedures, and activities are all recorded in a system of record in compliance with regulatory requirements.

Current challenges
One of the biggest challenges is the ability to easily aggregate the data from the many different systems and integrate them with the operator's daily activity and responses to the many notifications they receive. This makes it difficult for handover, when a new control room operator comes in fresh to take over from the operator coming off duty. Ensuring a clean and clear handover that encompasses all the pertinent information, so that the new operator can take over the console with ease and clarity, is much more difficult than some would imagine.

Another issue is the sheer volume of data. When you have thousands of sensors streaming data, it is not unrealistic for a console to receive a few thousand data points per second. Performance and continuity are priorities on a CI control room console(s). So there is no room for error — meaning there is no room for big (quite literally) data.

All of this means that real-time data must be pushed off the operational and process control network and moved into an area where there are no controls, but big data can be stored to produce big-data analytic capabilities, enabling AI, machine learning, and other data science.

Controller/operator fatigue is also an issue. Manual tracking, documenting, and record-keeping increases fatigue, leading to more mistakes and omissions.

Opportunities for improvement
The Houston-based Tory Technologies, Inc. is a corporation specializing in advanced software applications, creating and integrating various innovative technologies, and providing solutions for control room management and electronic flow measurement data management.

Tory Technologies, Inc. can help with the auto population of forms, inclusion of historical alarms and responses, and easy handover of control with active/open issues highlighted, making for an easier transition from one operator to the next.

"CRM is essential for keeping operations safe and efficient in industries where mistakes can lead to serious problems," says Juan Torres, director of operations - MaCRoM at Tory Technologies, Inc. "While many control rooms have worked hard to meet compliance standards, challenges remain that can affect performance and safety. It's not enough to just meet the basic rules; we need to go further by using smarter tools and strategies that make CRM more than just compliant, but truly effective."

Shaun Six, president of UTSI International, notes that, "CRM solutions are scalable. A smart integration with relevant systems and related data will reduce 'white noise' and increase relevance of data being displayed at the right time, or recalled when most helpful."

The future state
Offering CRM as a service for non-regulated control rooms will give economies of scale to critical infrastructure operators, which will allow dispatching, troubleshooting, and network monitoring so operators can focus on more value-add activities.

It can also virtualize network monitoring, ensuring that field machines and edge computers are compliant with industry and company standards and are not exposed to external threats.

Even better: Much of this can be automated. Smart tools can look through each device and test that passwords are changed, configurations are secure, and firmware/software has been properly patched or safeguarded against known exploits.

The sheer volume of data from these exercises can be overwhelming to operators. But a trained professional can easily filter and curate this data, cutting through the noise and helping asset owners address high-risk/high-probability exploits and plan/manage them.

Ultimately, the goal is to make control rooms efficient, getting the right information to the right people at the right time, while also retaining and maintaining required documents and data, ensuring an operators “license to operator” is uninterrupted and easily accessible to external parties when requested or needed.

Integrating smart CRM systems, network monitoring tools, and testing/validating processes and procedures are all easily accessible with current technological capabilities and availability, letting operators focus on the task at hand with ease and peace of mind.

BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies. Photo via Getty Images

Houston researchers create AI model to tap into how brain activity relates to illness

brainiac

Houston researchers are part of a team that has created an AI model intended to understand how brain activity relates to behavior and illness.

Scientists from Baylor College of Medicine worked with peers from Yale University, University of Southern California and Idaho State University to make Brain Language Model, or BrainLM. Their research was published as a conference paper at ICLR 2024, a meeting of some of deep learning’s greatest minds.

“For a long time we’ve known that brain activity is related to a person’s behavior and to a lot of illnesses like seizures or Parkinson’s,” Dr. Chadi Abdallah, associate professor in the Menninger Department of Psychiatry and Behavioral Sciences at Baylor and co-corresponding author of the paper, says in a press release. “Functional brain imaging or functional MRIs allow us to look at brain activity throughout the brain, but we previously couldn’t fully capture the dynamic of these activities in time and space using traditional data analytical tools.

"More recently, people started using machine learning to capture the brain complexity and how it relates it to specific illnesses, but that turned out to require enrolling and fully examining thousands of patients with a particular behavior or illness, a very expensive process,” Abdallah continues.

Using 80,000 brain scans, the team was able to train their model to figure out how brain activities related to one another. Over time, this created the BrainLM brain activity foundational model. BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies.

Abdallah said that using BrainLM will cut costs significantly for scientists developing treatments for brain disorders. In clinical trials, it can cost “hundreds of millions of dollars,” he said, to enroll numerous patients and treat them over a significant time period. By using BrainLM, researchers can enroll half the subjects because the AI can select the individuals most likely to benefit.

The team found that BrainLM performed successfully in many different samples. That included predicting depression, anxiety and PTSD severity better than other machine learning tools that do not use generative AI.

“We found that BrainLM is performing very well. It is predicting brain activity in a new sample that was hidden from it during the training as well as doing well with data from new scanners and new population,” Abdallah says. “These impressive results were achieved with scans from 40,000 subjects. We are now working on considerably increasing the training dataset. The stronger the model we can build, the more we can do to assist with patient care, such as developing new treatment for mental illnesses or guiding neurosurgery for seizures or DBS.”

For those suffering from neurological and mental health disorders, BrainLM could be a key to unlocking treatments that will make a life-changing difference.

The UH team is developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources. Photo via Getty Images

Houston researcher scores prestigious NSF award for machine learning, power grid tech

grant funding

An associate professor at the University of Houston received the highly competitive National Science Foundation CAREER Award earlier this month for a proposal focused on integrating renewable resources to improve power grids.

The award grants more than $500,000 to Xingpeng Li, assistant professor of electrical and computer engineering and leader of the Renewable Power Grid Lab at UH, to continue his work on developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources, according to a statement from UH. This work has applications in the events of large disturbances to the grid.

Li explains that currently, power grids run off of converted, stored kinetic energy during grid disturbances.

"For example, when the grid experiences sudden large generation losses or increased electrical loads, the stored kinetic energy immediately converted to electrical energy and addressed the temporary shortfall in generation,” Li said in a statement. “However, as the proportion of wind and solar power increases in the grid, we want to maximize their use since their marginal costs are zero and they provide clean energy. Since we reduce the use of those traditional generators, we also reduce the power system inertia (or stored kinetic energy) substantially.”

Li plans to use machine learning to create more streamlined models that can be implemented into day-ahead scheduling applications that grid operators currently use.

“With the proposed new modeling and computational approaches, we can better manage grids and ensure it can supply continuous quality power to all the consumers," he said.

In addition to supporting Li's research and model creations, the funds will also go toward Li and his team's creation of a free, open-source tool for students from kindergarten up through their graduate studies. They are also developing an “Applied Machine Learning in Power Systems” course. Li says the course will help meet workforce needs.

The CAREER Award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF. It's given to about 500 researchers each year.

Earlier this year, Rice assistant professor Amanda Marciel was also

granted an NSF CAREER Award to continue her research in designing branch elastomers that return to their original shape after being stretched. The research has applications in stretchable electronics and biomimetic tissues.

------

This article originally ran on EnergyCapital.

The NIH grant goes toward TransplantAI's work developing more precise models for heart and lung transplantation. Photo via Getty Images

Houston health tech company scores $2.2M grant to use AI to make organ transplants smarter, more successful

future of medicine

The National Institute of Health has bestowed a Houston medtech company with a $2.2 million Fast-Track to Phase 2 award. InformAI will use the money for the product development and commercialization of its AI-enabled organ transplant informatics platform.

 Last year, InformAI CEO Jim Havelka told InnovationMap, “A lot of organs are harvested and discarded.”

TransplantAI solves that problem, as well as organ scarcity and inefficiency in allocation of the precious resource.

How does it work? Machine learning and deep learning from a million donor transplants informs the AI, which determines who is the best recipient for each available organ using more than 500 clinical parameters. Organ transplant centers and organ procurement organizations (OPOs) will be able to use the product to make a decision on how to allocate each organ in real time. Ultimately, the tool will service 250 transplant centers and 56 OPOs around the United States.

The NIH grant goes toward developing more precise models for heart and lung transplantation (kidney and liver algorithms are further along in development thanks to a previous award from the National Science Foundation), as well as Phase 2 efforts to fully commercialize TransplantAI.

"There is an urgent need for improved and integrated predictive clinical insights in solid organ transplantation, such as for real-time assessment of waitlist mortality and the likelihood of successful post-transplantation outcomes," according to the grant’s lead clinical investigator, Abbas Rana, associate professor of surgery at Baylor College of Medicine.

“This information is essential for healthcare teams and patients to make informed decisions, particularly in complex cases where expanded criteria allocation decisions are being considered," Rana continues. "Currently, the separation of donor and recipient data into different systems requires clinical teams to conduct manual, parallel reviews for pairing assessments. Our team, along with those at other leading transplant centers nationwide, receives hundreds of organ-recipient match offers weekly.”

Organ transplantation is moving into the future, and Transplant AI is at the forefront.

Houston can learn a lot from the decades of success from Silicon Valley, according to this Houston founder, who outlines just what all the city needs to do to become the startup city it has the potential to be. Photo via Getty Images

Houston expert: Can Houston replicate and surpass the success of Silicon Valley?

guest column

Anyone who knows me knows, as a Houston Startup Founder, I often muse about the still developing potential for startups in Houston, especially considering the amount of industry here, subject matter expertise, capital, and size.

For example, Houston is No. 2 in the country for Fortune 500 Companies — with 26 Bayou City companies on the list — behind only NYC, which has 47 ranked corporations, according to Fortune.

Considering layoffs, fund closings, and down rounds, things aren’t all that peachy in San Francisco for the first time in a long time, and despite being a Berkeley native, I’m rooting for Houston now that I’m a transplant.

Let’s start by looking at some stats.

While we’re not No. 1 in all areas, I believe we have the building blocks to be a major player in startups, and in tech (and not just energy and space tech). How? If the best predictor of future success is history, why not use the template of the GOAT of all startup cities: San Francisco and YCombinator. Sorry fellow founders – you’ve heard me talk about this repeatedly.

YCombinator is considered the GOAT of Startup Accelerators/Incubators based on:

  1. The Startup success rate: I’ve heard it’s as high as 75 percent (vs. the national average of 5 to 10 percent) Arc Search says 50 percent of YC Co’s fail within 12 years – not shabby.
  2. Their startup-to-unicorn ratio: 5 to 7 percent of YC startups become unicorns depending on the source — according to an Arc Search search (if you haven’t tried Arc Search do – super cool).
  3. Their network.

YC also parlayed that success into a "YC Startup School" offering:

  1. Free weekly lessons by YC partners — sometimes featuring unicorn alumni
  2. A document and video Library (YC SAFE, etc)
  3. Startup perks for students (AWS cloud credits, etc.)
  4. YC co-founder matching to help founders meet co-founders

Finally, there’s the over $80 billion in returns, according to Arc search, they’ve generated since their 2005 inception with a total of 4,000 companies in their portfolio at over $600 billion in value. So GOAT? Well just for perspective there were a jaw-dropping 18,000 startups in startup school the year I participated – so GOAT indeed.

So how do they do it? Based on anecdotal evidence, their winning formula is said to be the following well-oiled process:

  1. Bring over 282 startups (the number in last cohort) to San Francisco for 90 days to prototype, refine the product, and land on the go-to-market strategy. This includes a pre-seed YC SAFE investment of a phased $500,000 commitment for a fixed min 7 percent of equity, plus more equity at the next round’s valuation, according to YC.
  2. Over 50 percent of the latest cohort were idea stage and heavily AI focused.
  3. Traction day: inter-portfolio traction the company. YC has over 4,000 portfolio companies who can and do sign up for each other’s companies products because “they’re told to."
  4. Get beta testers and test from YC portfolio companies and YC network.
  5. If they see the traction scales to a massively scalable business, they lead the seed round and get this: schedule and attend the VC meetings with the founders.
  6. They create a "fear of missing out" mentality on Sand Hill Road as they casually mention who they’re meeting with next.
  7. They block competitors in the sector by getting the top VC’s to co-invest with then in the seed so competitors are locked out of the A list VC funding market, who then are up against the most well-funded and buzzed about players in the space.

If what I've seen is true, within a six-month period a startup idea is prototyped, tested, pivoted, launched, tractioned, seeded, and juiced for scale with people who can ‘make’ the company all in their corner, if not already on their board.

So how on earth can Houston best this?

  1. We have a massive amount of businesses — around 200,000 — and people — an estimated 7.3 million and growing.
  2. We have capital in search of an identity beyond oil.
  3. Our Fortune 500 companies that are hiring consultants for things that startups here that can do for free, quicker, and for a fraction of the extended cost.
  4. We have a growing base of tech talent for potential machine learning and artificial intelligence talent
  5. A sudden shot at the increasingly laid off big tech engineers.
  6. We have more accelerators and incubators.

What do we need to pull it off?

  1. An organized well-oiled YC-like process
  2. An inter-Houston traction process
  3. An "Adopt a Startup" program where local companies are willing to beta test and iterate with emerging startup products
  4. We have more accelerators but the cohorts are small — average five to 10 per cohort.
  5. Strategic pre-seed funding, possibly with corporate partners (who can make the company by being a client) and who de-risk the investment.
  6. Companies here to use Houston startup’s products first when they’re launched.
  7. A forum to match companies’ projects or labs groups etc., to startups who can solve them.
  8. A process in place to pull all these pieces together in an organized, structured sequence.

There is one thing missing in the list: there has to be an entity or a person who wants to make this happen. Someone who sees all the pieces, and has the desire, energy and clout to make it happen; and we all know this is the hardest part. And so for now, our hopes of besting YC may be up in the air as well.

------

Jo Clark is the founder of Circle.ooo, a Houston-based tech startup that's streamlining events management.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Innovation Labs @ TMC set to launch for early-stage life science startups

moving in

The Texas Medical Center will launch its new Innovation Labs @ TMC in January 2026 to better support life science startups working within the innovation hub.

The new 34,000-square-foot space, located in the TMC Innovation Factory at 2450 Holcombe Blvd., will feature labs and life science offices and will be managed by TMC. The space was previously occupied by Johnson & Johnson's JLABS @TMC, a representative from TMC tells InnovationMap. JLABS will officially vacate the space in January.

TMC shares that the expansion will allow it to "open its doors to a wider range of life science visionaries," including those in the TMC BioBridge program and Innovation Factory residents. It will also allow TMC to better integrate with the Innovation Factory's offerings, such as the TMC Health Tech accelerator, TMC Center for Device Innovation and TMC Venture Fund.

“We have witnessed an incredible demand for life science space, not only at the TMC Innovation Factory, but also on the TMC Helix Park research campus,” William McKeon, president and CEO of the TMC, said in a news release. “Innovation Labs @ TMC enables us to meet this rising demand and continue reshaping how early-stage life science companies grow, connect, and thrive.”

“By bringing together top talent, cutting-edge research, and industry access in one central hub, we can continue to advance Houston’s life science ecosystem," he continued.

The TMC Innovation Factory has hosted 450 early-stage ventures since it launched in 2015. JLABS first opened in the space in 2016 with the goal of helping health care startups commercialize.

13 Houston businesses appear on Time's best midsize companies of 2025

new report

A Houston-based engineering firm KBR tops the list of Texas businesses that appear on Time magazine and Statista’s new ranking of the country’s best midsize companies.

KBR holds down the No. 30 spot, earning a score of 91.53 out of 100. Time and Statista ranked companies based on employee satisfaction, revenue growth, and transparency about sustainability. All 500 companies on the list have annual revenue from $100 million to $10 billion.

According to the Great Place to Work organization, 87 percent of KBR employees rate the company as a great employer.

“At KBR, we do work that matters,” the company says on the Great Place to Work website. “From climate change to space exploration, from energy transition to national security, we are helping solve the great challenges of our time through the high-end, differentiated solutions we provide. In doing so, we’re striving to create a better, safer, more sustainable world.”

KBR recorded revenue of $7.7 billion in 2024, up 11 percent from the previous year.

The other 12 Houston-based companies that landed on the Time/Statista list are:

  • No. 141 Houston-based MRC Global. Score: 85.84
  • No. 168 Houston-based Comfort Systems USA. Score: 84.72
  • No. 175 Houston-based Crown Castle. Score: 84.51
  • No. 176 Houston-based National Oilwell Varco. Score: 84.50
  • No. 234 Houston-based Kirby. Score: 82.48
  • No. 266 Houston-based Nabor Industries. Score: 81.59
  • No. 296 Houston-based Archrock. Score: 80.17
  • No. 327 Houston-based Superior Energy Services. Score: 79.38
  • No. 332 Kingwood-based Insperity. Score: 79.15
  • No. 359 Houston-based CenterPoint Energy. Score: 78.02
  • No. 461 Houston-based Oceaneering. Score: 73.87
  • No. 485 Houston-based Skyward Specialty Insurance. Score: 73.15

Additional Texas companies on the list include:

  • No. 95 Austin-based Natera. Score: 87.26
  • No. 199 Plano-based Tyler Technologies. Score: 86.49
  • No. 139 McKinney-based Globe Life. Score: 85.88
  • No. 140 Dallas-based Trinity Industries. Score: 85.87
  • No. 149 Southlake-based Sabre. Score: 85.58
  • No. 223 Dallas-based Brinker International. Score: 82.87
  • No. 226 Irving-based Darling Ingredients. Score: 82.86
  • No. 256 Dallas-based Copart. Score: 81.78
  • No. 276 Coppell-based Brink’s. Score: 80.90
  • No. 279 Dallas-based Topgolf. Score: 80.79
  • No. 294 Richardson-based Lennox. Score: 80.22
  • No. 308 Dallas-based Primoris Services. Score: 79.96
  • No. 322 Dallas-based Wingstop Restaurants. Score: 79.49
  • No. 335 Fort Worth-based Omnicell. Score: 78.95
  • No. 337 Plano-based Cinemark. Score: 78.91
  • No. 345 Dallas-based Dave & Buster’s. Score: 78.64
  • No. 349 Dallas-based ATI. Score: 78.44
  • No. 385 Frisco-based Addus HomeCare. Score: 76.86
  • No. 414 New Braunfels-based Rush Enterprises. Score: 75.75
  • No. 431 Dallas-based Comerica Bank. Score: 75.20
  • No. 439 Austin-based Q2 Software. Score: 74.85
  • No. 458 San Antonio-based Frost Bank. Score: 73.94
  • No. 475 Fort Worth-based FirstCash. Score: 73.39
  • No. 498 Irving-based Nexstar Broadcasting Group. Score: 72.71

Texas ranks as No. 1 most financially distressed state, says new report

Money Woes

Experiencing financial strife is a nightmare of many Americans, but it appears to be a looming reality for Texans, according to a just-released WalletHub study. It names Texas the No. 1 most "financially distressed" state in America.

To determine the states with the most financially distressed residents, WalletHub compared all 50 states across nine metrics in six major categories, such as average credit scores, the share of people with "accounts in distress" (meaning an account that's in forbearance or has deferred payments), the one-year change in bankruptcy filings from March 2024, and search interest indexes for "debt" and "loans."

Joining Texas among the top five most distressed states are Florida (No. 2), Louisiana (No. 3), Nevada (No. 4), and South Carolina (No. 5).

Texas' new ranking as the most financially distressed state in 2025 may be unexpected, WalletHub says, considering the state has a "bigger GDP than most countries" and still has one of the top 10 best economies in the nation (even though that ranking is also lower than it was in previous years).

Even so, Texas residents are stretching themselves very thin financially this year. Texans had the ninth lowest average credit scores nationwide during the first quarter of 2025, the study found, and Texans had the sixth-highest increase in non-business-related bankruptcy filings over the last year, toppling 22 percent.

"Texas also had the third-highest number of accounts in forbearance or with deferred payments per person, and the seventh-highest share of people with these distressed accounts, at 7.1 percent," the report said.

This is where Texas ranked across the study's six key dimensions, where No. 1 means "most distressed:"

  • No. 5 – "Loans" search interest index rank
  • No. 6 – Change in bankruptcy filings from March 2024 to March 2025 rank
  • No. 7 – Average number of accounts in distress rank
  • No. 8 – People with accounts in distress rank
  • No. 13 – Credit score rank and “debt” search interest index rank
Examining these financial factors on the state level is important for understanding how Americans are faring with economic issues like inflation, unemployment rates, or natural disasters, according to WalletHub analyst Chip Lupo.


"When you combine data about people delaying payments with other metrics like bankruptcy filings and credit score changes, it paints a good picture of the overall economic trends of a state," Lupo said.

On the other side of the spectrum, states like Hawaii (No. 50), Vermont (No. 49), and Alaska (No. 48) are the least financially distressed states in America.

The top 10 states with the most people in financial distress in 2025 are:

  • No. 1 – Texas
  • No. 2 – Florida
  • No. 3 – Louisiana
  • No. 4 – Nevada
  • No. 5 – South Carolina
  • No. 6 – Oklahoma
  • No. 7 – North Carolina
  • No. 8 – Mississippi
  • No. 9 – Kentucky
  • No. 10 – Alabama
---

A version of this article originally appeared on CultureMap.com.