The new $1 million gift will target top recruits. Photo courtesy of University of Houston

One of the most prestigious foundations in Texas has made a generous gift to a local university's fledgling medical department. The M.D. Anderson Foundation has pledged $1 million to the University of Houston College of Medicine, UH announced.

The sizable gift is meant to establish the M.D. Anderson Foundation Endowed Professorship in Medicine, specifically to recruit a leader in health care to join the College of Medicine faculty, according to a press release.

The gift, matched one-to-one by an anonymous donor to create a $2 million endowment, aims to support the new medical school's mission to improve health and health care in underserved communities in Houston and across Texas.

This isn't the first time the M.D. Anderson Foundation has supported UH. The foundation has gifted more than $6 million to UH Libraries, UH Law Center, Hobby School of Public Affairs, and the College of Medicine.

"Innovation in health care requires a fresh approach and a willingness to break down traditional silos to collaborate with experts in other health disciplines such as pharmacy, engineering, law and even data sciences, said Dr. Stephen Spann, founding dean of the UH College of Medicine," in a statement.

"By harnessing the power of data analytics, we can fundamentally change the way we deliver higher quality and cost-effective care to more people. Thanks to the M.D. Anderson Foundation's generosity and vision, we will be able to recruit a new faculty member who can help us greatly to accomplish these goals."

As previously reported, UH received a $50 million gift from an anonymous donor in 2019 to establish the "$100 Million Challenge," meant to recruit top nationally recognized and awarded research faculty for chairs and professorships, designed to inspire another $50 million in investments from additional donors.

Now, the school hopes to utilize these funds to address what the school describes as a "critical primary care physician shortage, especially in low-income and minority communities lacking access to a regular source of care and have gaps in preventative care, which leads to higher rates of sickness, hospitalization, and death."

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”