University of Houston Professor Haleh Ardebili (right) and Navid Khiabani, a graduate research assistant, are creating bendable batteries. Photo via UH.edu

A new breakthrough prototype out of the University of Houston was inspired by science fiction.

"As a big science fiction fan, I could envision a ‘science-fiction-esque future’ where our clothes are smart, interactive and powered,” according to a statement Haleh Ardebili, who last month published a paper on a new stretchable fabric-based lithium-ion battery in the Extreme Mechanics Letters.

“It seemed a natural next step to create and integrate stretchable batteries with stretchable devices and clothing," she said. "Imagine folding or bending or stretching your laptop or phone in your pocket. Or using interactive sensors embedded in our clothes that monitor our health.”

The battery uses conductive silver fabric as a platform and current collector, which stretches (or mechanically deforms) while allowing movement for electrons and ions. Traditional lithium batteries are quite rigid and use a liquid electrolyte, which are flammable and have potential risks of exploding.

The technology is only a prototype now, but Ardebili, who's the Bill D. Cook Professor of Mechanical Engineering at UH, and the paper's first author Bahar Moradi Ghadi, a former doctoral student, think the battery could have many applications, including in smart space suits, consumer electronics and implantable biosensors.

While it's just a prototype now, the technology has a lot of potential in the wearable tech space. Photo via UH.edu

The team's focus now is to ensure the battery is "as safe as possible" before it becomes available on the market.

“Commercial viability depends on many factors such as scaling up the manufacturability of the product, cost and other factors,” Ardebili said. “We are working toward those considerations and goals as we optimize and enhance our stretchable battery.”

Ardebili first conceptualized the product several years ago and has since earned several key wards and grants to support the design, including a five-year National Science Foundation CAREER Award in 2013, a New Investigator Award from the NASA Texas Space Center Grant Consortium in 2014 and an award from the US Army Research Lab in 2017.

A number of Houston-based organizations are working to create innovative batteries.

Earlier this summer, TexPower EV Technologies Inc. opened a 6,000-square-foot laboratory and three-ton-per-year pilot production line in Northwest Houston to help the University of Texas-born company to further commercialize its cobalt-free lithium-ion cathode, which can be used in electric vehicles.

Another Houston-based company Zeta Energy has also developed proprietary sulfur-based cathodes and lithium metal anodes that have shown to have higher capacity and density and better safety profiles than lithium sulfur batteries. The company landed a $4 million grant from the U.S. Department of Energy's ARPA-E Electric Vehicles for American Low-Carbon Living, or EVs4ALL, program, in January.

TexPower's founders — Board Chairman Arumugam Manthiram, CTO Wangda Li, and CEO Evan Erickson, respectively — celebrated the opening of the company's new lab space. Photo courtesy of TexPower

Houston startup with revolutionary battery technology opens new labs

power move

A Houston startup founded off research out of a Texas university has cut the ribbon on its new lab space.

TexPower EV Technologies Inc. celebrated the opening of its 6,000-square-foot laboratory and three-ton-per-year pilot production line at a ribbon-cutting event last week. The Northwest Houston site is located at 6935 Brittmoore Rd.

The new space will help the company further commercialize its cobalt-free lithium-ion cathode, lithium nickel manganese aluminum oxide (NMA). The technology is game changing for the electrification of the United States, including the rapid adoption of electric vehicles.

Currently, the country is experiencing a supply chain crisis, says Evan Erickson, co-founder and CEO of the company, at the event. Most of the world's cobalt, a material traditionally used in lithium-ion cathodes, is sourced primarily from the Congo and refinement is mostly controlled by China, he explains.

For these reasons, Cathodes are the most expensive component of lithium-ion batteries. But TexPower has a unique technology to solve this supply chain issue, and now with its new labs, is one step closer to commercialization of its materials.

TexPower spun out of the University of Texas at Austin in 2019. The company was co-founded by Erickson with CTO Wangda Li and Board Chairman Arumugam Manthiram, a professor at UT whose lithium-ion battery research fuels the foundation of the company.

“We want to point out how lucky we are — as a company and as scientists," Erickson says at the ribbon cutting event. "It’s not common that you see something you work on in academia turn into something that can become commercially successful.”

Prior to the newly built labs, TexPower operated out of the University of Houston's Tech Bridge. The company intends to raise additional funding to support its expansion.

According to the company, the new three-ton-per-year pilot line is the first step toward building a manufacturing facility that's capable of producing up to 50 times more the amount of cathode with a goal to impact markets such as defense, power tools, and eVTOL.

CEO Evan Erickson celebrated the new lab space opening last week

Photo courtesy of TexPower

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

neuro research

Rice University launched its new Amyloid Mechanism and Disease Center last month, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases.

The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established.

The team will work to ultimately increase its understanding of amyloid processes and will collaborate with the Texas Medical Center to turn lab discoveries into real progress for patients. It will hold its launch event on Jan. 21, 2026, and hopes to eventually be a launchpad for future external research funding.

The new hub will be led by Pernilla Wittung-Stafshed, a Rice biophysicist and the Charles W. Duncan Jr.-Welch Chair in Chemistry.

“To make a real difference, we have to go all the way and find a cure,” Wittung-Stafshede said in a news release. “At Rice, with the Amyloid Mechanism and Disease Center as a catalyst, we have the people and ideas to open new doors toward solutions.”

Wittung-Stafshede, who was recruited to Rice through a Cancer Prevention and Research Institute of Texas grant this summer, has led pioneering work on how metal-binding proteins impact neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Her most recent study, published in Advanced Science, suggests a new way of understanding how amyloids may harm cells and consume the brain’s energy molecule, ATP.

According to Alzheimer’s Disease International, neurodegenerative disease cases could reach around 78 million by 2030 and 139 million by 2050. Wittung-Stafshede’s father died of dementia several years ago.

“This is close to my heart,” Wittung-Stafshede added in the news release. “Neurodegenerative diseases such as dementia, Alzheimer’s and Parkinson’s are on the rise as people live longer, and age is the largest risk factor. It affects everyone.”

This Houston airport saw sharp passenger decline in 2025, study shows

Travel Talk

A new global airport travel study has revealed passenger traffic at Houston's William P. Hobby Airport (HOU) sharply decreased from 2024 to 2025.

The analysis from travel magazine LocalsInsider examined recently released data from the Bureau of Transportation Statistics (BTS), the U.S. International Trade Association, and a nationwide survey to determine the following American traveler habits: The most popular U.S. and international destinations, emerging hotspots, and destinations on the decline. The study covered passenger travel trends from January through July 2025.

In the report's ranking of the 40 U.S. airports with the sharpest declines in passenger traffic, HOU ranked 13th on the list.

About 4.26 million arrivals were reported at HOU from January through July 2024, compared to about 3.96 million during the same seven-month period in 2025. According to the data, that's a significant 7.1 percent drop in passenger traffic year-over-year, or a loss of 300,974 passengers.

"As travelers chase new hotspots, some destinations are seeing reduced passenger traffic whether due to rising costs, shifting airline schedules, or evolving traveler preferences, some destinations are seeing a decrease in visitors," the report's author wrote.

It appears most major Texas airports had drops in passenger traffic from 2024 to 2025. Dallas Love Field Airport (DAL) saw the worst in the state, with a dramatic 7.4 percent dip in arrivals. DAL also ranked 11th on the list of U.S. airports with the steepest declines in passenger traffic.

More than 5.13 million arrivals were reported at DAL from January through July 2024, compared to over 4.75 million during the same seven-month period in 2025.

This is how passenger traffic has fallen at other major Texas airports from 2024 to 2025:

Austin-Bergstrom International Airport (AUS):

  • 6,107,597 – Passenger arrivals from January to July 2024
  • 5,828,396 – Passenger arrivals from January to July 2025
  • -4.6 percent – Year-over-year passenger change
Dallas/Fort Worth International Airport (DFW):
  • 23,830,017 – Passenger arrivals from January to July 2024
  • 23,251,302 – Passenger arrivals from January to July 2025
  • -2.4 percent – Year-over-year passenger change

San Antonio International Airport (SAT):

  • 2,937,870 – Passenger arrivals from January to July 2024
  • 2,836,774 – Passenger arrivals from January to July 2025
  • -3.4 percent – Year-over-year passenger change
El Paso International Airport (ELP):
  • 1,094,431 – Passenger arrivals from January to July 2024
  • 1,076,845 – Passenger arrivals from January to July 2025
  • -1.6 percent – Year-over-year passenger change
---

This story originally appeared on CultureMap.com.

NASA names new chief astronaut based in Houston

new hire

NASA has a new chief astronaut. Scott Tingle, stationed at the space agency’s Johnson Space Center in Houston, assumed the post Nov. 10.

Tingle succeeds NASA astronaut Joe Acaba, who had been chief astronaut since February 2023. Acaba now works on the staff of the Johnson Space Center’s director.

As chief astronaut, Tingle runs NASA’s Astronaut Office. His job includes developing astronauts’ flight crew operations and assigning crews for space missions, such as Artemis missions to the moon.

Tingle, a former captain in the Navy, was named a NASA astronaut candidate in 2009. He has logged over 4,500 flight hours in more than 50 aircraft.

Tingle was a flight engineer aboard the International Space Station, where he spent 168 days in orbit during two expeditions that launched in December 2017. Since returning to Earth, he has held various roles in the Astronaut Office, including mission support, technical leadership and crew readiness.

Before joining NASA, Tingle worked in El Segundo, California, on the technical staff of The Aerospace Corp., a nonprofit that supports U.S. space programs.

Tingle recalls expressing his desire to be an astronaut when he was 10 years old. It took him four tries to be accepted by NASA as an astronaut candidate.

“The first time I figured it was kind of too early. The second application, they sent out some feelers, and that was about it. Put in my third application, and got a couple of calls, but it didn’t quite happen,” Tingle said in an article published on the website of Purdue University, his alma mater.