When taking research and innovation to the business sector, there are some disclosures you should factor in. Graphic by Miguel Tovar/University of Houston

Meet Professor Doolittle, a biologist and chair of Genetics at Zoo U.

After studying genetic mutations in small-ear pigs to better understand coat color variation for breed preservation and development, Doolittle and his post-doc invented a genetic test and launched a startup called PigMentation. The post-doctoral co-inventor runs PigMentation’s day-to-day business operations; she receives no salary from PigMentation but receives equity in the company. Doolittle is the chief technology officer. Like many faculty startups, PigMentation licensed the technology from Zoo U to begin commercialization. Due to the fact that the company does not have a laboratory yet to scale the technology, funds were raised by PigMentation to establish a sponsored research agreement with the university to support R&D in Professor Doolittle’s lab on campus. The company ultimately hopes to receive a National Institutes of Health STTR award and subcontract to Zoo U to supplement further development.

In addition, Doolittle received additional research funding from a Hungarian agricultural company to study color variation in a large population of Mangalitsa pigs, the “Kobe Beef of Pork, ” in Hungary. As part of this project, he partnered with an institution in Hungary as part of a collaborative research program that allows U.S. students to work in the lab overseas and Hungarian students to come to the U.S. Before kicking off the project, Doolittle will purchase 1,500 units at $179 per unit from PigMentation to do the first phase of the study.

How many potential disclosures should Professor Doolittle make to Zoo U? How much potential risk does Doolittle present?

  1. External Consulting, Employment and Professional Activities
  2. Pending Relationships
  3. Related Party Interests
  4. Research Conflict of Interest
  5. Conflict of Commitment
  6. Dual Employment
  7. Foreign Influence
  8. Licensing

If you selected every disclosure listed in Professor Doolittle’s case, you are correct. But do you think Doolittle understands each little detail of his scenario and who manages that risk across the university? Is it the research compliance office, contracts and grants, human resources, legal or his department?

And even if he succeeds in disclosing it all, can each individual office manage their part without introducing a certain level of risk to the professor, the university and the funding agency?

Risky business

While Professor Doolittle’s case is complex, it’s not farfetched. Better managing risk for cases like Doolittle’s is top of mind for university compliance operations right now. As the regulatory environment becomes increasingly complex, there is more at stake today than what senior investigators are used to, and that creates risk.

“There are more regulations than in the past, there is more scrutiny. We’re not the same University we were 20 years ago,” said Lauri Ruiz, senior assistant in the University of Houston’s Office of General Counsel. “If researchers have an NIH grant, for example, they have to comply with federal regulations as well as state and institutional regulations.”

In addition to changing and expanding regulations, there is also enhanced enforcement of the rules, said Ruiz, making it critical for universities and their researchers to comply. The problem: It’s hard to know every single detail that needs to be disclosed.

“There are a lot of people with good intentions, but they may not know about the rules,” she said.

And then there’s the matter of doing it.

“Faculty want to do the right thing, but they don’t get around to disclosing it all,” said Kirstin Holzschuh, executive director of Research Integrity and Oversight at UH. “If we know about it, we can manage it before it becomes a problem.”

To complicate the matter, many universities like UH have offices across the institution that manage specific disclosures, making it more difficult for researchers to know what to disclose where.

“Universities tend to be very siloed and faculty get confused about what they have to do to be compliant, ” said Susan Koch, chief compliance officer at UH. “There is a significant need for universities to make a seamless, cohesive process that is easy for faculty to follow.”

According to Koch, Ruiz and Holzschuh, many top research institutions may have this process fixed for faculty, as they have been in the business of major research operations for many years now. For rising universities such as the University of Houston, compliance operations are scrambling to keep up with their university’s rapidly growing research and innovation enterprises — in addition to expanding regulations.

“It would be ideal to have a centralized operation that intakes all disclosures and works with specific university offices to manage certain aspects of a researcher’s case,” said Holzschuh. “But like many institutions, UH does not have the resources to support that kind of operation yet, so we have to find a different solution.”

Holistic risk management

Much like we go to our primary care provider who reviews our overall health before referring us to specialists to solve specific problems, university compliance should work the same way. Centralized compliance management may be the future, but it’s not quite possible for many universities at the moment.

“We have to find a way to move forward in a thoughtful way based on our available resources,” said Koch. “These are compliance challenges that are being discussed across higher education — everyone is trying to make strides in this area.”

To address this challenge at UH, the University has launched a compliance initiative to streamline all university disclosures and ensure that all touchpoints and processes are more understandable for faculty to follow.

Led by Koch, Institutional Compliance teamed with the offices of General Counsel and Research Integrity and Oversight to form a cross-disciplinary committee to consolidate the disclosure intake and management processes, as well as provide institutional training.

“We’re setting up a communication structure so that silos are no longer silos, ” she said.

Specifically, the UH team is working on a multiphased-approach that will involve the development of a user-friendly web portal that will prompt faculty to fill out certain disclosures based on their individual case. The tool will work by taking faculty down a decision tree, triggering a set of actions they need to take. Based on how they answer certain questions, faculty will be directed toward the disclosures they need to file.

“We want to design it in such a way that it is easy for faculty to navigate complex issues,” added Ruiz.

In addition to creating the disclosure portal, the team plans to update disclosure forms, streamline processes and workflows, reevaluate who has oversight, and design education and training to ensure compliance.

“The old paper-based processes don’t work anymore,” said Koch. “People can’t locate what form they need, so our processes need to be advanced.”

And while modernizing and simplifying the process for faculty is a great first step, the team is already thinking about how to better manage the process on the backend in a more centralized manner.

“We’re hoping to eventually have a central repository of disclosed information so that compliance teams across the university have access to the same information,” said Holzschuh. “It’s difficult to manage a case piecemeal, because all of the small details are very interconnected.”

The team will also make a major investment to “up their game” to better educate and communicate with faculty — and all those who support university research, including research staff and leadership.

“We are excited about the portal that will help faculty fill out the forms,” said Holzschuh. “But education is key.”

The big idea

In the coming year, the Professor Doolittles at the University of Houston — and hopefully other institutions across the nation — will better understand what disclosures need to be filed through simple, clear processes, thanks to the hard work and ingenuity of our university compliance teams. This could not be of greater importance, according to Ruiz.

“This just isn’t the university coming up with random things to create roadblocks,” she said. “Non-compliance with federal and state regulations could result in jail time and millions of dollars in penalties sanctioned against the University.”

To be quite frank, it’s in all of our best interest to comply with regulations — and make the processes easy to follow, especially if we want to continue to demonstrate our academic research integrity, keep monies in the university piggy bank and keep our people out of “the pen. “

------

This article originally appeared on the University of Houston's The Big Idea. Lindsay Lewis, the author of this piece, formerly served as the executive director of communications for the UH Division of Research.

Building a consortium is a model that increases productivity both as a way to provide financial support and as a way to have a large group working on a single goal and to build a consistent cash flow to support a graduate research program. Graphic by Miguel Tovar/University of Houston

Houston expert: How to build a research consortium

houston voices

Most principal investigators spend many hours laboring over proposals to fund their research programs – and for good reason. While competing for funding is the big business for researchers, some have opted to fund their programs in other ways, like building a research consortium.

The word "consortium" means a group of individuals, companies or governments that work together to achieve a specific purpose. Research consortia are generally partnerships between institutions and industry, where several companies in a specific industry sector will pay an annual fee to be a part of the university-led consortium. In return, the university will research solutions to critical problems identified by the company and provide critical research data.

Considering a consortium

Professor Paul Mann, a geologist at the University of Houston, has successfully run a consortium of energy companies since 2005, funding up to 20 graduate and undergraduate research students every year. He routinely brings in hundreds of thousands of dollars per year in funding and has students working on solutions for geologic problems in the Caribbean, Gulf of Mexico, and the circum-Atlantic margins.

"Academic research consortia are a great way to fund research programs long term," said Mann. "Each company puts a certain amount of money in to fund a specific project and it creates a smoother cash flow to support students."

According to Mann, who runs the Conjugate Basins, Tectonics and Hydrocarbons Consortium, building a consortium requires a much different skill set than managing a taxpayer-supported, public grant through federal agencies such as the National Science Foundation. Since consortia are partnerships, in-person visits, relationship-building and trust with the sponsoring companies are key to building a successful one.

And instead of submitting routine technical reports, professors who have consortia visit companies, make presentations and meet one-on-one with their partners.

"We rely on companies for their continued funding, so we visit them in person as a way of building trust and transferring information. In meetings, we share what we are finding out, they share their knowledge and we both come away at a higher level of understanding," said Mann. He also transfers information to the company through summer internships or students who become full-time employees following their graduation from UH.

Mann also partners with researchers in the petroleum engineering program at University of Stavanger in Norway that is led by Professor Alejandro Escalona. Escalona completed his Ph.D. and postdoctoral study with the CBTH project at The University of Texas at Austin in 2006 and is now head of the Petroleum Geosciences section at Stavanger.

Find sponsors for your consortium

Building a consortium provides many opportunities for industry partners to get involved. A consortium also provides a flexible, project-based structure and allows partners to come to the table when they have a specific project that needs to be explored.

Other than joining as an official partner to support a project, companies can partner with academia to provide data sets for students to research.

"Data from industry are generally superior to anything that academia can collect because the industry has the resources and infrastructure to develop and support the highest level of subsurface imaging of the deep sedimentary basins that we use for our studies," said Mann.

"Students can work directly with critical industry data sets to accomplish the goals of the project. In return, the data provided increases its value through our interpretations and analysis which benefits the company that provided it."

Get other partners

Another way industry can contribute is through technical support from industry service companies that provide software for the consortium to use in their studies.

"Software helps accomplish complex analyses and provides students a chance to use cutting edge methods in their research projects," said Mann.

This investment transfers back to industry, he adds. As students graduate, they enter industry with strong experience working with the software. They then can promote the use of the software and train others in the company in its applications.

"Software evolves at a fast pace so keeping up requires significant effort," said Mann.

Build credibility with industry

To keep your consortia going, it must bring value to industry. This means providing successful applications to practical problems, such as exploring the subsurface in the search for hydrocarbons, according to Mann.

"We end up on applications – how can we use the science for practical benefits?" said Mann. "The students are exposed to the A-Z science value chain.'"

Performance benchmarked by publications builds credibility with companies, adds Mann, who requires doctoral students to publish three peer-reviewed articles on their dissertation research and master's students to publish one article on their thesis. He also involves students in site visits or Zoom meetings with companies to present the findings of the project. This gives students a chance to investigate summer internship and employment opportunities.

Since the CBTH project moved to UH a decade ago, CBTH-supported students have published 96 peer-reviewed, first-authored articles.

"Theses and dissertations tend to collect dust on shelves in libraries or languish in obscure digital archives, while published papers that are widely accessible online or at sites like Research Gate are at the forefront of the global dialogue of science," said Mann. "I tell the students that their published articles will be their legacy to the pool of human knowledge, so make sure you advance your work to as close to perfection as possible".

Build credibility for your consortium

According to Mann, students in the CBTH also regularly place in the annual poster competitions. Since 2013, they have won 138 awards.

"By the time our students graduate, they are masters of the 'graphical arts' that are based on a variety of software used to maximize the impact of their data and interpretations," said Mann. He said they also attain a high level of confidence, either presenting oral presentations in front of larger groups or poster presentations to smaller groups. The communication skills and confidence they gain serve them well, he said, throughout their careers.

These competitions also help to elevate the status of the UH Earth and Atmospheric Sciences department, which is currently ranked at number 54 in the U.S.A. by U.S. News and World Report.

Along with winning other competitions, Mann said these top performance activities really help establish credibility within the field and that will draw more interest in the consortium.

"Everyone in academia and industry values and respects peer-reviewed articles published in the top geoscience journals. With the electronic age the science dialogue has accelerated, so figuring out where the cutting edge is currently located can be a challenge," said Mann.

The Big Idea?

Building a consortium is a model that increases productivity both as a way to provide financial support and as a way to have a large group working on a single goal and to build a consistent cash flow to support a graduate research program.

Public grant funding tends to be on shorter time scales and that can make the multi-year funding for student projects more challenging, according to Mann. But once established and producing results, a research consortium is a solid model for supporting your students.

Watch this interview with Paul Mann about creating and running a consortium

------

This article originally appeared on the University of Houston's The Big Idea. Lindsay Lewis, the author of this piece, is the executive director of communications for the UH Division of Research.

Think you know what's happening at university tech transfer offices? Think again. Graphic by Miguel Tovar/University of Houston

Houston expert: 4 misconceptions of university tech transfer offices

houston voices

Beyond their education and research missions, universities across the nation have turned research discoveries into big business. In addition to protecting intellectual property from faculty discoveries, universities build and support startup pipelines to help researchers commercialize those technologies.

However, there are a few misconceptions when it comes to university tech transfer offices that keep faculty at bay. Here, we'll take a look at four misconceptions and explore the truth behind the thinking.

Misconception 1: Filing patent paperwork is all tech transfer offices do

While tech transfer offices are in the business of patents, many offer a full range of services to support the commercialization process. This can include everything from strategy and startup development to the establishment of enterprise and industry ventures. Many university tech transfer offices operate incubators, co-working space for startups and accelerator programs, and some even build and manage venture funds.

"At the University of Houston, we now offer lots of services to faculty, such as strategy sessions to help them understand the commercial potential of their technologies," said Chris Taylor, executive director of the UH Office of Technology Transfer and Innovation. "We also help faculty license their technologies to ensure fair use as they transition them into the market."

Misconception 2: I need to have a fully-developed idea to submit a disclosure

According to Taylor, many faculty begin interacting with tech transfer offices once they have a technology fully developed. But tech transfer offices can do much more for faculty if involved early in the process.

"Yes, we do help protect what's been developed. But, if we have a conversation at the beginning, we could help faculty shape or pivot their technologies. This will give them the greatest market potential," he said.

One of the many benefits of tech transfer offices is their ability to readily research the market.

"We can determine whether or not technologies can be disclosed, patented and licensed. It's important to know this before going through a lengthy and expensive filing process."

Misconception 3: The patent process will slow down my publication plans

Publishing researching findings may be one of the most important activities for the university researcher. However, publishing research on unprotected discoveries can result in the loss of patent rights. Therefore, filing a disclosure is very important, according to Taylor.

"Publishing is one of the best ways to market university technologies," he said. "However, industry values patented technologies, so it's better to make a small time investment to protect your IP.

Misconception 4: Getting a patent is the primary goal for tech transfer offices

As Taylor explains, the primary goal of tech transfer offices is to help faculty "transfer" their discoveries to society. And while patenting technologies is one way to do that, tech transfer offices also provide education and mentoring programs. They also support other protections such as copyrights for software.

"IP protection is important," he said. "It gives faculty control over how their technology is used, for good or for bad. So, this is an important part of the work that we do for faculty. But, we support faculty in so many other ways through the entire pipeline."

------

This article originally appeared on the University of Houston's The Big Idea. Lindsay Lewis, the author of this piece, is the executive director of communivations for the UH Division of Research.

UH has launched its Tech Map, which visualizes startup and innovation activity across the city. Photo via Getty Images

University of Houston launches interactive map of the city's innovation ecosystem

introducing tech map

The greater Houston area spans 9,444 square miles — an area larger than the entire state of New Jersey — and the question was never if Houston's sprawl was going to affect interaction between startups, resources, and opportunities, but how to overcome these physical challenges with digital solutions. The latest of which has launched out of the University of Houston's Technology Bridge.

The Tech Map — an interactive, embeddable visualization that takes data about startups and other innovation players and compiles it into a map of entrepreneurial activity in the Houston area — has officially launched with hundreds of startups represented already.

"This kind of tool — it really tells you where innovation is happening, it's not just in the startup development organizations," says Lindsay Lewis, executive director of communications for the UH Division of Research. "It's amazing to see that it's happening all over the city."

The tool, which is free to embed and available to anyone, is already live on Houston Exponential's homepage and the city of Houston's Innovation Portal. It's comprised of data submitted by startup development organizations, self-submitted information, and research by the Tech Bridge's team.

To be represented on the map, click here.


Lewis stresses the importance of creating the tool in a collaborative way, which is why bringing on partners and their databases was so key. The tool isn't designed in Cougar Red or predominantly feature UH-based startups or anything. The Tech Map isn't meant to rock the boat of what any other organization is doing, rather just visually represent the goings on.

"For us, it was a balance between trying to show the story of Houston and where innovation is happening and aggregating, but what we didn't want to do was be a replacement. We wanted this to be a resource for an individual starting point," says Chris Taylor, executive director for the Tech Bridge. "The biggest challenge for most people is you really don't know where to start."

This year has been one for digital tools focused on better portraying Houston's innovation ecosystem. This summer, Houston Exponential launched the HTX TechList to virtually connect startups, mentors, investors, and other movers and shakers in Houston. The two entities are collaborative — HTX TechList's data is even involved in the Tech Map.

"There was a need for connection," Taylor says. "Since 2013 when I got here, that's always been a challenge and a hurdle. How do we connect all these different stakeholders in a way that's meaningful."

While the map is launched and ready to be used, it's only the beginning for it as it grows its data and adds new features.

"We're not done with this map — this is just the 1.0 version," Lewis says. "We're meeting to talk about next-step functionalities and where we are going to take it."

Houston-based Sensytec founder gives his advice for accelerating your startup. Miguel Tovar/University of Houston

University of Houston-founded company shares its lessons learned from accelerator programs

Houston Voices

A startup accelerator provides promising companies with an opportunity to boost their chances of marketing their technologies. These programs help small companies pivot their technologies strategically, interface with industry sectors and engage with mentor network to better pitch their ideas to the market.

Unfortunately, most startups will never have the chance to participate in an accelerator. But the information gained from such an experience can be valuable knowledge for all entrepreneurs who wish to accelerate their business.

Sensytec – a UH startup that developed smart cement to monitor the health of structures – was recently accepted into the Techstars Energy Accelerator. Techstars Energy is a highly competitive accelerator in Norway that partners with Equinor, Kongsberg, and Mckinsey to find sustainable technologies for the energy industry. Sensytec's smart cement technology is being considered for use in new oil and gas wells and concrete structures.

Sensytec president Ody De La Paz learned quite a bit about what companies are looking for when it comes to new technology and what entrepreneurs can do to boost their startups.

Understand where your tech fits into the market

Though joining Techstars to better position their smart cement technology to energy companies, De La Paz has learned the many ways in which his company's tech could be positioned to other markets.

"Recognizing the way the market is moving is critical to successfully pitching your tech to customers," he says. "But you have to be honest with yourself – your target market may not be the one you need to pitch your tech to make money."

According to De La Paz, this is where many inventors may miss their opportunity to profit.

"It's understandable that many researchers and inventors are passionate about the one problem they are trying to solve," he says. "But the real trick is trying to discover the solution currently needed by industry sectors – and that is continually changing."

His recommendation? Be open to any opportunity.

"It's not so much about you or your technology," he says. "It's about how your technology fits within an industry's business strategy. It's always about what the company needs, so there may be different applications to consider."

Focus on company values

Every decision made by industry will be focused on the bottom line. It's business, after all. But in addition to providing a high-value, low-cost solution for companies, aligning your tech with company core values may win over a few more hearts.

"Because we know that Equinor has a 'safety first' approach and values sustainability, we put together a solid business case to reflect those values," says De La Paz.

Current technologies used to monitor cement are not as accurate as they should be, says De La Paz. This leads to very costly solutions. So Sensytec built a business case that outlines how their technology accurately reports when cement loses structural health, allowing companies to proactively fix problems before they become disasters.

"We know exploration and drilling will continue," he says. "But if we can show how our technology is not only cost effective, but a safer choice for oil and gas companies like Equinor, we will align with their values and that's very important to them."

Seek feedback — and lots of it

One of the things De La Paz has experienced while in the Techstars Energy accelerator is the value of feedback.

In fact, he says you can't get enough of it, that every piece of feedback, every perspective gained is another clue that helps you figure out if your technology is needed and, if so, how to pitch it.

Here's what he suggests:

1. Interview as many customers as possible

According to De La Paz, every person working in that industry has perspective. He and his team have interviewed hundreds of experts, from the architect to the concrete manufacturer to subcontractors. "It's important to understand your customer and how they think about our technology," he says.

2. Find mentors

In addition to interviewing customers, select a few as mentors. Business leaders, strategists, and even everyday users, can help you toss around ideas.

3. Be honest with yourself

When you receive the feedback, be honest with yourself, says De La Paz. You may be better suited for another market or you may need to pivot your technology, but this will not happen if the feedback is not used wisely.

De La Paz also stress the value of patience and persistence during this process.

"It's a very long process and there's a lot you have to consider," he says. "But if you stay on top of everything and follow through, it will help your startup get moving more quickly."


------

This article originally appeared on the University of Houston's The Big Idea.

Lindsay Lewis is the director of strategic research communications at UH.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Meet 6 mentors who are helping the Houston startup scene flourish

meet the finalists

Few founders launch successful startups alone — experienced and insightful mentors often play an integral role in helping the business and its founders thrive.

The Houston startup community is home to many mentors who are willing to lend an ear and share advice to help entrepreneurs meet their goals.

The Mentor of the Year category in our 2025 Houston Innovation Awards will honor an individual like this, who dedicates their time and expertise to guide and support budding entrepreneurs. The award is presented by Houston City College Northwest.

Below, meet the six finalists for the 2025 award. They support promising startups in the medical tech, digital health, clean energy and hardware sectors.

Then, join us at the Houston Innovation Awards this Thursday, Nov. 13 at Greentown Labs, when the winner will be unveiled. The event is just days away, so secure your seats now.

Anil Shetty, InformAI

Anil Shetty serves as president and chief medical officer for biotech company Ferronova and chief innovation officer for InformAI. He's mentored numerous medical device and digital health companies at seed or Series A, including Pathex, Neurostasis, Vivifi Medical and many others. He mentors through organizations like Capital Factory, TMC Biodesign, UT Venture Mentoring, UTMB Innovation and Rice's Global Medical Innovation program.

"Being a mentor means empowering early-stage innovators to shape, test, and refine their ideas with clarity and purpose," Shetty says. "I’m driven by the opportunity to help them think strategically and pivot early before resources are wasted. At this critical stage, most founders lack the financial means to bring on seasoned experts and often haven’t yet gained real-world exposure. Mentorship allows me to fill that gap, offering guidance that accelerates their learning curve and increases the chances of meaningful, sustainable impact."

Jason Ethier, EnergyTech Nexus

Jason Ethier is the founding partner of EnergyTech Nexus, through which he has mentored numerous startups and Innovation Awards finalists, including Geokiln, Energy AI Solutions, Capwell Services and Corrolytics. He founded Dynamo Micropower in 2011 and served as its president and CEO. He later co-founded Greentown Labs in Massachusetts and helped bring the accelerator to Houston.

"Being a mentor means using my experience to help founders see a clearer path to success. I’ve spent years navigating the ups and downs of building companies, struggling with cash flow, and making all the mistakes; mentoring gives me the chance to share those lessons and show entrepreneurs the shortcuts I wish I’d known earlier," Ethier says. "At Energytech Nexus, that role goes beyond just helping individual founders — it’s about creating a flywheel effect for Houston’s entire innovation ecosystem."

Jeremy Pitts, Activate Houston

Jeremy Pitts serves as managing director of Activate Houston, which launched in Houston last year. He was one of the founders of Greentown Labs in the Boston area and served in a leadership role for the organization between 2011 and 2015. Through Activate, he has mentored numerous impactful startups and Innovation Awards finalists, including Solidec, Coflux Purification, Bairitone Health, Newfound Materials, Deep Anchor Solutions and others.

"Being a mentor to me is very much about supporting the person in whatever they need. Oftentimes that means supporting the business—providing guidance and advice, feedback, introductions, etc," But just as important is recognizing the person and helping them with whatever challenges they are going through ... Sometimes they need a hype man to tell them how awesome they are and that they can go do whatever hard thing they need to do. Sometimes they just need an empathetic listener who can relate to how hard these things are. Being there for the person and supporting them on their journey is key to my mentorship style."

Joe Alapat, Liongard

Joe Alapat founded and serves as chief strategy officer at Houston software company Liongard and chief information officer at Empact IT, which he also owns. He mentors through Founder Fridays Houston Group, Software Day by Mercury Fund, SUPERGirls SHINE Foundation, Cup of Joey and at the Ion. He's worked with founders of FlowCare, STEAM OnDemand, Lokum and many other early stage startups.

"Being a mentor to me means unleashing an individual’s 10x—their purpose, their ikigai (a Japanese concept that speaks to a person’s reason for being)," Alapat says. "Mentoring founders in the Houston community of early stage, high-growth startups is an honor for me. I get to live vicariously through a founder’s vision of the future. Once they show me that compelling vision, I’m drawn to bring the future forward with them so the vision becomes reality with a sense of urgency."

Neal Dikeman, Energy Transition Ventures

Neal Dikeman serves as partner at early stage venture fund Energy Transition Ventures, executive in residence at Greentown Labs, and offices in and supports Rice Nexus at the Ion. He mentors startups, like Geokiln, personally. He also mentored Helix Earth through Greentown Labs. The company went on to win in the Smart Cities, Transportation & Sustainability contest at SXSW earlier this year. Dikeman has helped launch several successful startups himself, most recently serving on the board of directors for Resilient Power Systems, which was acquired by Eaton Corp for $150 million.

"Founders have to find their own path, and most founders need a safe space where they can discuss hard truths outside of being 'on' in sales mode with their team or board or investors, to let them be able to work on their business, not just in it," Dikeman says.

Nisha Desai, Intention

Nisha Desai serves as CEO of investment firm Intention and mentors through Greentown Labs, TEX-E, Open Minds, the Rice Alliance Clean Energy Accelerator, Avatar Innovations and The Greenhouse. She currently works with founders from Solidec, Deep Anchor Solutions, CLS Wind and several other local startups, several of which have been nominated for Innovation Awards this year. She's served a board member for Greentown Labs since 2021.

"When I first started mentoring, I viewed my role as someone who was supposed to prevent the founder from making bad decisions. Now, I see my role as a mentor as enabling the founder to develop their own decision-making capability," Desai says. "Sometimes that means giving them the space to make decisions that might be good, that might be bad, but that they can be accountable for. At the end of the day, being a mentor is like being granted a place on the founder's leadership development journey, and it's a privilege I'm grateful for."

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Rice, Houston Methodist developing soft 'sleep cap' for brain health research

Researchers and scientists at Rice University and Houston Methodist are developing a “sleep cap” that aims to protect the brain against dementia and other similar diseases by measuring and improving deep sleep.

The project is a collaboration between Rice University engineering professors Daniel Preston, Vanessa Sanchez and Behnaam Aazhang; and Houston Methodist neurologist Dr. Timea Hodics and Dr. Gavin Britz, director of the Houston Methodist Neurological Institute and chairman of the Department of Neurosurgery.

According to Rice, deep sleep is essential for clearing waste products from the brain and nightly “cleaning cycles” help remove toxic proteins. These toxic proteins, like amyloids, can accumulate during the day and are linked to Alzheimer’s disease and other neurological issues.

Aazhang, director of the Rice Neuroengineering Initiative, and his team are building a system that not only tracks the brain’s clearing process but can also stimulate it, improving natural mechanisms that protect against neurodegeneration.

Earlier proof-of-concept versions of the caps successfully demonstrated the promise of this approach; however, they were rigid and uncomfortable for sleep.

Preston and Sanchez will work to transform the design of the cap into a soft, lightweight, textile-based version to make sleep easier, while also allowing the caps to be customizable and tailored for each patient.

“One of the areas of expertise we have here at Rice is designing wearable devices from soft and flexible materials,” Preston, an assistant professor of mechanical engineering, said in a news release. “We’ve already shown this concept works in rigid device prototypes. Now we’re building a soft, breathable cap that people can comfortably wear while they sleep.”

Additionally, the research team is pursuing ways to adapt their technology to measure neuroinflammation and stimulate the brain’s natural plasticity. Neuroinflammation, or swelling in the brain, can be caused by injury, stroke, disease or lifestyle factors and is increasingly recognized as a driver of neurodegeneration, according to Rice.

“Our brain has an incredible ability to rewire itself,” Aazhang added in the release. “If we can harness that through technology, we can open new doors for treating not just dementia but also traumatic brain injury, stroke, Parkinson’s disease and more.”

The project represents Rice’s broader commitment to brain health research and its support for the Dementia Prevention Research Institute of Texas (DPRIT), which passed voter approval last week. The university also recently launched its Rice Brain Institute.

As part of the project, Houston Methodist will provide access to clinicians and patients for early trials, which include studies on patients who have suffered traumatic brain injury and stroke.

“We have entered an era in neuroscience that will result in transformational cures in diseases of the brain and spinal cord,” Britz said in the release. “DPRIT could make Texas the hub of these discoveries.”

Autonomous truck company with Houston routes goes public

on a roll

Kodiak Robotics, a provider of AI-powered autonomous vehicle technology, has gone public through a SPAC merger and has rebranded as Kodiak AI. The company operates trucking routes to and from Houston, which has served as a launchpad for the business.

Privately held Kodiak, founded in 2018, merged with a special purpose acquisition company — publicly held Ares Acquisition Corp. II — to form Kodiak AI, whose stock now trades on the Nasdaq market.

In September, Mountain View, California-based Kodiak and New York City-based Ares disclosed a $145 million PIPE (private investment in public equity) investment from institutional investors to support the business combo. Since announcing the SPAC deal, more than $220 million has been raised for the new Kodiak.

“We believe these additional investments underscore our investors’ confidence in the value proposition of Kodiak’s safe and commercially deployed autonomous technology,” Don Burnette, founder and CEO of Kodiak, said in a news release.

“We look forward to leading the advancement of the commercial trucking and public sector industries,” he added, “and delivering on the exciting value creation opportunities ahead to the benefit of customers and shareholders.”

Last December, Kodiak debuted a facility near George Bush Intercontinental/Houston Airport for loading and loading driverless trucks. Transportation and logistics company Ryder operates the “truckport” for Ryder.

The facility serves freight routes to and from Houston, Dallas and Oklahoma City. Kodiak’s trucks currently operate with or without drivers. Kodiak’s inaugural route launched in 2024 between Houston and Dallas.

One of the companies using Kodiak’s technology is Austin-based Atlas Energy Solutions, which owns and operates four driverless trucks equipped with Kodiak’s driver-as-a-service technology. The trucks pick up fracking sand from Atlas’ Dune Express, a 42-mile conveyor system that carries sand from Atlas’ mine to sites near customers’ oil wells in the Permian Basin.

Altogether, Atlas has ordered 100 trucks that will run on Kodiak’s autonomous technology in an effort to automate Atlas’ supply chain.