Collaborative for Children is focused on utilizing social-emotional learning robots and coding tech toys. Photo courtesy of Collaborative for Children

Generally, when children are under the age of five, educators believe that they are best suited for and interested in learning, because those are the years in which there is the strongest opportunity to build a broad and solid foundation for lifelong literacy and well-being.

That sentiment is deeply held by Collaborative for Children, the Houston-based nonprofit organization with the mission to meaningfully improve the quality of early childhood education and provide access to cutting-edge technology through its Centers of Excellence to all children, especially those in low-income and marginalized communities.

“The reason the organization was started about 40 years ago is that a group of philanthropists in the greater Houston area suggested that this was so important because 90 percent of the brain develops or grows in the time frame between ages zero to five years of age,” Melanie Johnson, president and CEO of Collaborative for Children, tells InnovationMap.

“And if we were losing children and not preparing them by third grade to be literate, and then subsequently losing them after that for high dropout rates and achievement gaps between poor and affluent children, that this would be the perfect place to start," she continues. "And so, they put the collaborative, the emphasis, and finances collaborative of every, most every early education effort around this region.”

Collaborative for Children’s work in the community is centered around making sure that there is educational equity for all children, regardless of financial status, and providing access to technologies in meaningful ways.

“Ultimately, we want to bridge the digital divide early on so that when children start off their academic journey, they're starting off equipped with the skills to be successful there on,” says Johnson.

Most recently, the institution has focused on utilizing social-emotional learning robots and coding tech toys like the Pepper — the world’s first social humanoid robot able to recognize faces and basic human emotions — and NAO, which resembles human being and stimulates, robots to enhance learning in the classrooms of its Centers of Excellence.

“Technology enhances the learning experience in the Centers of Excellence in ways that a teacher might not be able to,” says Johnson. “Artificial intelligence is used in gamification to allow a child to play and learn while playing.”

For Collaborative for Children, gamification involves transforming typical academic components into gaming themes.

“While playing, the AI gauges the level of skills that they’ve been able to enter into that system and respond with even more challenging tasks or tasks that are still lateral so that they can continue to repeat that skill,” says Johnson.

The socio-emotional learning robots are indeed fascinating, but how does the nonprofit reach these children, and their parents, who might be skeptical of technology?

Ultimately, through the teachers. They draw them in via the technology. If teachers are excited, they act as a conductor of that energy to their students, making their innovative lessons well, electric.

That resonates with most all children, but especially with those diagnosed with autism.

“Robotics like NAO are great for children on the autism spectrum because they are emotionally sensitive and emotionally intelligent,” says Johnson. “They are low sensory, so as NAO runs around the classroom, it can literally have individual and unique conversations with each child based on facial recognition. But most importantly for me, is that this particular robot is able to evaluate children without statistical bias that a teacher might have.

“A teacher might think that because a child confuses the letter D and B, which are basically shaped the same in opposite directions, that they're not learning," she continues. "And the robot will have no prior knowledge in terms of, is this child the better child, or have they been learning throughout the year? The answers are accurate or inaccurate. So, they remove statistical bias when assessing children in the classroom.”

The misconception about teaching technologies is that it’s about screen time. According to Johnson, it’s not. It’s more about interacting with technology.

“We’ve added, you know, all kinds of modern-day technology so that this world that we're preparing these children for 80 percent of the jobs we don't even know will exist when they are adults,” says Johnson. “So, we're just trying to make sure that there is no divide in terms of 21st century skills and 21st century preparation.”

Building Blocks Ep. 12youtu.be

Collaborative for Children has so many facets to assist children with their early development, but there are inherent challenges when attempting to reach their target audience in low-income and marginalized communities that the organization counters with programs like the Collab Lab, which is a mobile classroom that brings critical, future-focused early childhood education directly to the community at no cost.

Designed to be convenient for families, Collab Lab connects parents and their youngest children with experts, educators, resources, and proven programs whose goal is to make sure that kids have the skills essential to learning from the moment they walk into kindergarten for the first time.

“There are a myriad of challenges in these communities that we serve, specifically with technology,” says Johnson. “When children enter first grade, and especially second grade, they're given notepads, basically, digital notepads, because it's no good in pre-K oftentimes, but it is very helpful for children who will never have access or have limited access to iPads and things of that nature.

“So while we don't want them to be babysat by screen time and have social media impacting their self-image and self-worth, we definitely want them to have appropriate doses and appropriate uses of technology in the early education, so that those barriers that their parents face with limited means, that these children can go to first grade and into the robotics class and be able to be evaluated and assessed on the digital notepads that are required nowadays,” she continues.

While technology is very important, Collaborative for Children also focuses on the critical social and emotional skills children need as they develop and the all too important relationship between children and their parents and teachers.

“Theory leads our work,” says Johnson. “It's all focused on fine motor skills, gross motor skills, social emotional, can a child build rapport with their teacher and with the students around them. Those things are paramount and will never change.

“What we use technology to do is enhance and remove biases from teacher-pupil interaction, but also to bridge any kind of divide in terms of 21st century skills. And in addition to that, we engage the families. So families who might not know about hydro-fueled cars in those communities that we serve will be able to be exposed to those concepts, as well through our group connections or parent partnerships.”

Ultimately, the last thing Collaborative for Children wants is to send children from early learning and childcare environments into the K-12 system unprepared to be successful for the real world.

“At Collaborative for Children,” adds Johnson. “We are continuously pushing the envelope at our Centers for Excellence so that the children that we serve will always be on the cutting edge.

The last thing Collaborative for Children wants is to send children from early learning and childcare environments into the K-12 system unprepared to be successful for the real world. Photo courtesy of Collaborative for Children

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."