March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Researchers from Baylor College of Medicine and the University of Houston have developed a new blood-filtering machine that poses fewer risks to pediatric patients with hyperleukocytosis. Photo courtesy UH.

UH, Baylor researchers make breakthrough with new pediatric leukemia treatment device

childhood cancer

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. Photo via Getty Images

Clinical-stage Houston cell therapy company closes $28.4M oversubscribed series A

cha-ching

An emerging biotech company in Houston has closed its series A with outsized success.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. The company has now raised more than $51 million in total.

Last year, March Biosciences announced its strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience. CEO Sarah Hein met her co-founder, Max Mamonkin, at the TMC Accelerator for Cancer Therapeutics. Along with fellow co-founder Malcolm Brenner, March Biosciences launched from the Center for Cell and Gene Therapy (Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital). Its goal is to fight cancers that have been unresponsive to existing immunotherapies using its lead asset, MB-105.

An autologous CD5-targeted CAR-T cell therapy, MB-105 is currently in phase-1 trials in patients with refractory T-cell lymphoma and leukemia. The treatment is showing signs of being both safe and effective, meriting a phase-2 trial that will begin early next year. The funds raised from the series A will help to finance the Phase 2 clinical development of MB-105 to expand on the existing data with optimized manufacturing processes.

“This oversubscribed financing enables us to advance our first-in-class CAR-T therapy, MB-105, into a Phase 2 trial for T-cell lymphoma – an indication with an exceptionally poor prognosis and few treatment options,” says Hein. “With the support and confidence of our investors, we are not only advancing our lead program but also expanding our pipeline, underscoring our commitment to delivering best-in-class therapies to patients that can change the treatment paradigm for these challenging cancers.”

But that’s not the only exciting news that Hein and her associates have to report. March Biosciences has recently partnered with cell therapy venture studio, Volnay Therapeutics. Led by highly experienced cell therapy development veterans, the March Biosciences team will work to develop a scalable manufacturing process for MB-105 that will lead to commercialization. Volnay co-founder and CEO Stefan Wildt, who held key R&D leadership positions in cell and gene therapy units at Novartis and Takeda, has also joined the board of March Biosciences. The board of directors is also welcoming Cassidy Blundell of Mission BioCapital and Owen Smith of 4BIO Capital.

“The team at March Biosciences is leveraging powerful science and promising clinical data to tackle cancers with significant unmet need,” says Blundell, a partner at Mission BioCapital. “We're excited to support their journey and believe their focused approach with MB-105 could lead to significant breakthroughs in the CAR-T space.”

The Houston-born company, which is a finalist for the 2024 Houston Innovation Awards, continues to accelerate quickly, in part thanks to its home base. After all, existing local investors like TMC Venture Fund also participated in the new raise. As Hein said last year, “Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

Rice biochemist Natasha Kirienko and MD Anderson physician-scientist Marina Konopleva made the striking discovery. Photo by Jeff Fitlow

Rice and MD Anderson researchers discover exciting new leukemia treatment

big win

Rice University and MD Anderson researchers have just discovered a potential one-two punch that could, they hope, knock out an insidious disease.

A recent study in the journal Leukemia centers on potential new drugs that, with the help of other medications, can thwart leukemia cells.

Specifically, Rice biochemist Natasha Kirienko and MD Anderson physician-scientist Marina Konopleva screened some 45,000 small-molecule compounds to find a few that targeted mitochondria, according to Rice press materials.

In this innovative new study, the team selected eight of the most promising compounds, identified between five and 30 closely related analogs for each, and conducted tens of thousands of tests to systematically determine how toxic each analog was to leukemia cells. This was measured both when administered individually or in combination with existing chemotherapy drugs like doxorubicin, notes a release.

Previously, Kirienko’s lab had shown the eight compounds targeted energy-producing machinery inside cells called mitochondria. Mitochondria, which work nonstop in every living cell, wear out with use. The chosen eight compounds induce mitophagy, which can be described as how cells decommission and recycle deficient and used-up.

Notably, during times of extreme stress, cells can temporarily forgo mitophagy for an emergency energy boost. Previous research has shown leukemia cells have far more damaged mitochondria than healthy cells and are also more sensitive to mitochondrial damage than healthy cells.

Thus, Kirienko and Konopleva reasoned that mitophagy-inducing drugs might weaken leukemia cells and make them more susceptible to chemotherapy. Synergy — using two or more drugs in treatment — is key.

“The point of synergy is that there are concentrations, or dosages, where a single drug doesn't kill,” Kirienko said. “There is no death of healthy cells or cancer cells. But administering those same concentrations in combination can kill a considerable amount of cancer cells and still not affect healthy cells.”

The team tested the toxicity of its mitophagy-inducing compounds and combinations against acute myeloid leukemia (AML) cells, the most commonly diagnosed form of the disease. They then tested the six most effective AML-killing compounds against other forms of leukemia, finding that five were also effective at killing acute lymphoblastic leukemia (ALL) cells and chronic myelogenous leukemia (CML) cells.

Studies found all the mitophagy-inducing drugs caused far less harm to healthy cells.

Finally, the researchers tested one of the most effective mitochondria-targeting compounds, PS127E, using a cutting-edge technique called a patient-derived xenograft (PDX) model. Also referred to as a “mouse clinical trial,” mice are implanted with cancer cells from a leukemia patient. As the cells grow, the mouse is exposed to a drug or combination of drugs as a closer-than-cells test of the treatment’s effect.

Importantly, PDX tests on one compound, PS127E, showed it was effective at killing AML cells in mice, Rice notes, signaling promising news.

“Although this is very promising, we’re still some distance from having a new treatment we can use in the clinic,” Kirienko added. “We still have a lot to discover. For example, we need to better understand how the drugs work in cells. We need to refine the dose we think would be best, and perhaps most importantly, we need to test on a wide variety of AML cancers. AML has a lot of variations, and we need to know which patients are most likely to benefit from this treatment and which are not. Only after we’ve done that work, which may take a few years, would we be able to start testing in humans.”

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

U.S. News names 5 Houston suburbs as the best places to retire in 2026

Retirement Report

Houston-area suburbs should be on the lookout for an influx of retirees in 2026. A new study by U.S. News and World Report has declared The Woodlands and Spring as the fourth and fifth best cities to retire in America, with three other local cities making the top 25.

The annual report, called "250 Best Places to Retire in the U.S. in 2026" initially compared 850 U.S. cities, and narrowed the list down to a final 250 cities (up from 150 previously). Each locale was analyzed across six indexes: quality of life for individuals reaching retirement age, value (housing affordability and cost of living), health care quality, tax-friendliness for retirees, senior population and migration rates, and the strength of each city's job market.

Midland, Michigan was crowned the No. 1 best place to retire in 2026. The remaining cities that round out the top five are Weirton, West Virginia (No. 2) and Homosassa Springs, Florida (No. 3).

According to U.S. News, about 15 percent of The Woodlands' population is over the age of 65. The median household income in this suburb is $139,696, far above the national average median household income of $79,466.

Though The Woodlands has a higher cost of living than many other places in the country, the report maintains that the city "offers a higher value of living compared to similarly sized cities."

"If you want to buy a house in The Woodlands, the median home value is $474,279," the city's profile on U.S. News says. "And if you're a renter, you can expect the median rent here to be $1,449." For comparison, the report says the national average home value is $370,489.

Spring ranked as the fifth best place to retire in 2026, boasting a population of more than 68,000 residents, 11 percent of whom are seniors. This suburb is located less than 10 miles south of The Woodlands, while still being far enough away from Houston (about 25 miles) for seniors to escape big city life for the comfort of a smaller community.

"Retirees are prioritizing quality of life over affordability for the first time since the beginning of the COVID-19 pandemic," said U.S. News contributing editor Tim Smart in a press release.

The median home value in Spring is lower than the national average, at $251,247, making it one of the more affordable places to buy a home in the Houston area. Renters can expect to pay a median $1,326 in monthly rent, the report added.

Elsewhere in Houston, Pearland ranked as the 17th best place to retire for 2026, followed by Conroe (No. 20) and League City (No. 25).

Other Texas cities that ranked among the top 50 best places to retire nationwide include Victoria (No. 12), San Angelo (No. 28), and Flower Mound (No. 37).

The top 10 best U.S. cities to retire in 2026 are:

  • No. 1 – Midland, Michigan
  • No. 2 – Weirton, West Virginia
  • No. 3 – Homosassa Springs, Florida
  • No. 4 – The Woodlands, Texas
  • No. 5 – Spring, Texas
  • No. 6 – Rancho Rio, New Mexico
  • No. 7 – Spring Hill, Florida
  • No. 8 – Altoona, Pennsylvania
  • No. 9 – Palm Coast, Florida
  • No. 10 – Lynchburg, Virginia
---

This article originally appeared on CultureMap.com.

Micro-nuclear reactor to launch at Texas A&M innovation campus in 2026

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston falls from top 50 in global ranking of 'World's Best Cities'

Rankings & Reports

Houston is no longer one of the top 50 best cities in the world, according to a prestigious annual report by Canada-based real estate and tourism marketing firm Resonance Consultancy.

The newest "World's Best Cities" list dropped Houston from No. 40 last year to No. 58 for 2026.

The experts at Resonance Consultancy annually compare the world's top 100 cities with metropolitan populations of at least 1 million residents or more based on the relative qualities of livability, "lovability," and prosperity. The firm additionally collaborated with AI software company AlphaGeo to determine each city's "exposure to risk, adaptation capacity," and resilience to change.

The No. 1 best city in the world is London, with New York (No. 2), Paris (No. 3), Tokyo (No. 4), and Madrid (No. 5) rounding out the top five in 2026.

Houston at least didn't rank as poorly as it did in 2023, when the city surprisingly plummeted as the 66th best city in the world. In 2022, Houston ranked 42nd on the list.

Despite dropping 18 places, Resonance Consultancy maintains that Houston "keeps defying gravity" and is a "coveted hometown for the best and brightest on earth."

The report cited the Houston metro's ever-growing population, its relatively low median home values ($265,000 in 2024), and its expanding job market as top reasons for why the city shouldn't be overlooked.

"Chevron’s shift of its headquarters from California to Houston, backed by $100 million in renovations, crowns relocations drawn by record 2024 Port Houston throughput of more than four million containers and a projected 71,000 new jobs in 2025," the report said.

The report also draws attention to the city's diversity, spanning from the upcoming grand opening of the long-awaited Ismaili Center, to the transformation of several industrial buildings near Memorial City Mall into a mixed-use development called Greenside.

"West Houston’s Greenside will convert 35,000 square feet of warehouses into a retail, restaurant and community hub around a one-acre park by 2026, while America’s inaugural Ismaili Center remains on schedule for later this year," the report said. "The gathering place for the community and home for programs promoting understanding of Islam and the Ismaili community is another cultural jewel for the country’s most proudly diverse major city."

In Resonance Consultancy's separate list ranking "America's Best Cities," Houston fell out of the top 10 and currently ranks as the 13th best U.S. city.

Elsewhere in Texas, Austin and Dallas also saw major declines in their standings for 2026. Austin plummeted from No. 53 last year to No. 87 for 2026, and Dallas fell from No. 53 to No. 78.

"In this decade of rapid transformation, the world’s cities are confronting challenges head‑on, from climate resilience and aging infrastructure to equitable growth," the report said. "The pandemic, long forgotten but still a sage oracle, exposed foundational weaknesses – from health‑care capacity to housing affordability. Yet, true to their dynamic nature, the leading cities are not merely recovering, but setting the pace, defining new paradigms of innovation, sustainability and everyday livability."

---

This article originally appeared on CultureMap.com.