March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Researchers from Baylor College of Medicine and the University of Houston have developed a new blood-filtering machine that poses fewer risks to pediatric patients with hyperleukocytosis. Photo courtesy UH.

UH, Baylor researchers make breakthrough with new pediatric leukemia treatment device

childhood cancer

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. Photo via Getty Images

Clinical-stage Houston cell therapy company closes $28.4M oversubscribed series A

cha-ching

An emerging biotech company in Houston has closed its series A with outsized success.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. The company has now raised more than $51 million in total.

Last year, March Biosciences announced its strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience. CEO Sarah Hein met her co-founder, Max Mamonkin, at the TMC Accelerator for Cancer Therapeutics. Along with fellow co-founder Malcolm Brenner, March Biosciences launched from the Center for Cell and Gene Therapy (Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital). Its goal is to fight cancers that have been unresponsive to existing immunotherapies using its lead asset, MB-105.

An autologous CD5-targeted CAR-T cell therapy, MB-105 is currently in phase-1 trials in patients with refractory T-cell lymphoma and leukemia. The treatment is showing signs of being both safe and effective, meriting a phase-2 trial that will begin early next year. The funds raised from the series A will help to finance the Phase 2 clinical development of MB-105 to expand on the existing data with optimized manufacturing processes.

“This oversubscribed financing enables us to advance our first-in-class CAR-T therapy, MB-105, into a Phase 2 trial for T-cell lymphoma – an indication with an exceptionally poor prognosis and few treatment options,” says Hein. “With the support and confidence of our investors, we are not only advancing our lead program but also expanding our pipeline, underscoring our commitment to delivering best-in-class therapies to patients that can change the treatment paradigm for these challenging cancers.”

But that’s not the only exciting news that Hein and her associates have to report. March Biosciences has recently partnered with cell therapy venture studio, Volnay Therapeutics. Led by highly experienced cell therapy development veterans, the March Biosciences team will work to develop a scalable manufacturing process for MB-105 that will lead to commercialization. Volnay co-founder and CEO Stefan Wildt, who held key R&D leadership positions in cell and gene therapy units at Novartis and Takeda, has also joined the board of March Biosciences. The board of directors is also welcoming Cassidy Blundell of Mission BioCapital and Owen Smith of 4BIO Capital.

“The team at March Biosciences is leveraging powerful science and promising clinical data to tackle cancers with significant unmet need,” says Blundell, a partner at Mission BioCapital. “We're excited to support their journey and believe their focused approach with MB-105 could lead to significant breakthroughs in the CAR-T space.”

The Houston-born company, which is a finalist for the 2024 Houston Innovation Awards, continues to accelerate quickly, in part thanks to its home base. After all, existing local investors like TMC Venture Fund also participated in the new raise. As Hein said last year, “Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

Rice biochemist Natasha Kirienko and MD Anderson physician-scientist Marina Konopleva made the striking discovery. Photo by Jeff Fitlow

Rice and MD Anderson researchers discover exciting new leukemia treatment

big win

Rice University and MD Anderson researchers have just discovered a potential one-two punch that could, they hope, knock out an insidious disease.

A recent study in the journal Leukemia centers on potential new drugs that, with the help of other medications, can thwart leukemia cells.

Specifically, Rice biochemist Natasha Kirienko and MD Anderson physician-scientist Marina Konopleva screened some 45,000 small-molecule compounds to find a few that targeted mitochondria, according to Rice press materials.

In this innovative new study, the team selected eight of the most promising compounds, identified between five and 30 closely related analogs for each, and conducted tens of thousands of tests to systematically determine how toxic each analog was to leukemia cells. This was measured both when administered individually or in combination with existing chemotherapy drugs like doxorubicin, notes a release.

Previously, Kirienko’s lab had shown the eight compounds targeted energy-producing machinery inside cells called mitochondria. Mitochondria, which work nonstop in every living cell, wear out with use. The chosen eight compounds induce mitophagy, which can be described as how cells decommission and recycle deficient and used-up.

Notably, during times of extreme stress, cells can temporarily forgo mitophagy for an emergency energy boost. Previous research has shown leukemia cells have far more damaged mitochondria than healthy cells and are also more sensitive to mitochondrial damage than healthy cells.

Thus, Kirienko and Konopleva reasoned that mitophagy-inducing drugs might weaken leukemia cells and make them more susceptible to chemotherapy. Synergy — using two or more drugs in treatment — is key.

“The point of synergy is that there are concentrations, or dosages, where a single drug doesn't kill,” Kirienko said. “There is no death of healthy cells or cancer cells. But administering those same concentrations in combination can kill a considerable amount of cancer cells and still not affect healthy cells.”

The team tested the toxicity of its mitophagy-inducing compounds and combinations against acute myeloid leukemia (AML) cells, the most commonly diagnosed form of the disease. They then tested the six most effective AML-killing compounds against other forms of leukemia, finding that five were also effective at killing acute lymphoblastic leukemia (ALL) cells and chronic myelogenous leukemia (CML) cells.

Studies found all the mitophagy-inducing drugs caused far less harm to healthy cells.

Finally, the researchers tested one of the most effective mitochondria-targeting compounds, PS127E, using a cutting-edge technique called a patient-derived xenograft (PDX) model. Also referred to as a “mouse clinical trial,” mice are implanted with cancer cells from a leukemia patient. As the cells grow, the mouse is exposed to a drug or combination of drugs as a closer-than-cells test of the treatment’s effect.

Importantly, PDX tests on one compound, PS127E, showed it was effective at killing AML cells in mice, Rice notes, signaling promising news.

“Although this is very promising, we’re still some distance from having a new treatment we can use in the clinic,” Kirienko added. “We still have a lot to discover. For example, we need to better understand how the drugs work in cells. We need to refine the dose we think would be best, and perhaps most importantly, we need to test on a wide variety of AML cancers. AML has a lot of variations, and we need to know which patients are most likely to benefit from this treatment and which are not. Only after we’ve done that work, which may take a few years, would we be able to start testing in humans.”

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics

2025 Houston Innovation Awards winners revealed at annual event

The winners are...

After weeks of anticipation, the 2025 Houston Innovation Awards winners have been revealed. Finalists, judges, and VIPs from Houston's vibrant innovation community gathered on Nov. 13 at Greentown Labs for the fifth annual event.

This year, the Houston Innovation Awards recognized more than 40 finalists, with winners unveiled in 10 categories.

2025 Innovation Awards group photo Winners gather for a photo at the annual event. Courtesy photo

Finalists and winners were determined by our esteemed panel of judges, comprised of 2024 winners who represent various Houston industries, as well as InnovationMap editorial leadership. One winner was determined by the public via an online competition: Startup of the Year.

The program was emceed by Lawson Gow, Head of Houston for Greentown Labs. Sponsors included Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more.

Without further adieu, meet the 2025 Houston Innovation Awards winners:

Minority-founded Business: Mars Materials

Clean chemical manufacturing business Mars Materials is working to convert captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. The company develops and produces its drop-in chemical products in Houston and uses an in-licensed process for the National Renewable Energy Lab to produce acrylonitrile, which is used to produce plastics, synthetic fibers and rubbers. The company reports that it plans to open its first commercial plant in the next 18 months.


Female-founded Business, presented by Houston Powder Coaters: March Biosciences

Houston cell therapy company March Biosciences aims to treat unaddressed challenging cancers, with its MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma, currently in Phase 2 clinical trials. The company was founded in 2021 by CEO Sarah Hein, Max Mamonkin and Malcolm Brenner and was born out of the TMC Accelerator for Cancer Therapeutics.

Energy Transition Business: Eclipse Energy

Previously known as Gold H2, Eclipse Energy converts end-of-life oil fields into low-cost, sustainable hydrogen sources. It completed its first field trial this summer, which demonstrated subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen.

Health Tech Business: Koda Health

Koda Health has developed an advance care planning platform (ACP) that allows users to document and share their care preferences, goals and advance directives for health systems. The web-based platform guides patients through values-based decisions with interactive tools and generates state-specific, legally compliant documents that integrate seamlessly with electronic health record systems. Last year, the company also added kidney action planning to its suite of services for patients with serious illnesses. In 2025, it announced major partnerships and integrations with Epic, Guidehealth, and others, and raised a $7 million series A.

Deep Tech Business: Persona AI

Persona AI is building modularized humanoid robots that aim to deliver continuous, round-the-clock productivity and skilled labor for "dull, dirty, dangerous, and declining" jobs. The company was founded by Houston entrepreneur Nicolaus Radford, who serves as CEO, along with CTO Jerry Pratt and COO Jide Akinyode. It raised eight figures in pre-seed funding this year and is developing its prototype of a robot-welder for Hyundai's shipbuilding division, which it plans to unveil in 2026.

Scaleup of the Year: Fervo Energy

Houston-based Fervo Energy is working to provide 24/7 carbon-free energy through the development of cost-competitive geothermal power. The company is developing its flagship Cape Station geothermal power project in Utah, which is expected to generate 400 megawatts of clean energy for the grid. The company raised $205.6 million in capital to help finance the project earlier this year and fully contracted the project's capacity with the addition of a major power purchase agreement from Shell.

Incubator/Accelerator of the Year: Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Startup of the Year (People's Choice): FlowCare

FlowCare is developing a period health platform that integrates smart dispensers, education, and healthcare into one system to make free, high-quality, organic period products more accessible. FlowCare is live at prominent Houston venues, including Discovery Green, Texas Medical Center, The Ion, and, most recently, Space Center Houston, helping make Houston a “period positivity” city.

Mentor of the Year, presented by Houston City College Northwest: Jason Ethier, EnergyTech Nexus

Jason Ethier is the founding partner of EnergyTech Nexus, through which he has mentored numerous startups and Innovation Awards finalists, including Geokiln, Energy AI Solutions, Capwell Services and Corrolytics. He founded Dynamo Micropower in 2011 and served as its president and CEO. He later co-founded Greentown Labs in Massachusetts and helped bring the accelerator to Houston.

2025 Trailblazer Award: Wade Pinder

Wade Pinder, founder of Product Houston, identifies as an "Ecosystem Wayseeker" and is the founder of Product Houston. A former product manager at Blinds.com, he has been deeply engaged in Houston’s startup and innovation scene since 2012. Over the years, he has supported hundreds of founders, product leaders, and community builders across the Houston area. In 2023, he was honored as Mentor of the Year in the Houston Innovation Awards.

America's first Ismaili Center set to open in Houston in December

Sneak Preview

The long-awaited Ismaili Center, Houston is set to open to the public next month. The 11-acre site has been painstakingly designed and constructed to offer indoor and outdoor public spaces for Houstonians to enjoy, connect, and engage. As the only Ismaili Center in the United States — and seventh in the world — it joins its international communities in London, Vancouver, Lisbon, Dubai, Dushanbe, and Toronto.

Nearly 20 years in the making, the Ismaili Center, Houston features a prayer hall, rotating art installations, a black box theater, a cafe, numerous social halls for weddings and other events, and nine acres of outdoor space and landscaped botanical gardens. Involved parties hope that the community will see the space as an extension of the neighboring parks along the bayou, and have included a garden entrance to the north lawn and gardens at the corner of Montrose Boulevard and Allen Parkway.

While Houston is known for its many community engagement centers, the architects and designers believe that the seamless integration of indoor and outdoor spaces sets the Ismaili Center, Houston apart from all others.

“What we know is the connections between buildings, environment, quality of life, and landscape — this is nothing new,” structural and facade engineer Hanif Kara says. “But, certainly, it’s hard to see that in other developments, particularly when they are done by developers. It’s quite difficult to find community spaces, and to see how quality of life is improved for everyone. I think we’ve all experienced that kind of hope that it will play out something like this.”

Designed by Farshid Moussavi Architecture and Nelson Byrd Woltz Landscape Architects, the remarkable 11-acre site is designed both to receive LEED Gold certification and to withstand the tests of Houston’s sometimes extreme weather conditions.

Principal architect Farshid Moussavi looks forward to seeing the Houston community utilize the space she’s worked so hard to deliver: “We’ve given the hardware to the community, now the software needs to come in. So I hope that there will be music recitals, or lectures, or book fairs, or other kinds of markets that can happen—even simultaneously. This is not an experiment, it’s the seventh in the world.”

Community welcome events are scheduled for December 12 and 13, but, until then, here are 10 features and things to know about the Ismaili Center, Houston.

What is the Ismaili Center, Houston?

“The use of the building is really meant for, or our hope, is that we are able to—on an enhanced view of what the community does today—have engagement on service projects, arts and culture, interfaith dialogue, and even just in bringing people together,” Omar Samji, Ismaili Council for the United States of America, says. “The notion of bringing people together in a place where it is easy to create connections because it’s an open space, and because it’s specifically designed to be a place where people interact and where people find commonality. Because whether you’re out in the gardens, or on the environs, or in the atrium, this enables connection.”

Who is His Highness the Aga Khan?

His Highness Prince Rahim Aga Khan V is the 50th hereditary Imam (spiritual leader) of the Shia Ismaili Muslims and a direct descendant of the Prophet Muhammad. He was educated at Philipps Academy in Andover and Brown University (Class of 1995). He became Imam in February 2025 upon the passing of his father, His Highness Prince Karim Aga Khan IV.

The Aga Khan promotes an understanding of Islam rooted in values of generosity, tolerance, pluralism, environmental stewardship, and the shared unity of humanity. He also chairs the Aga Khan Development Network (AKDN), one of the world’s largest private development agencies, which works across more than 30 countries to improve quality of life for marginalized communities regardless of faith or background.

The scale

The center stretches across an 11-acre site along Montrose Boulevard, from West Dallas to Allen Parkway. The physical building is 150,000 square feet, leaving nine acres for garden spaces on both the north and south sides of the building. The south side of the property is more formal, with gardens and community spaces that flank an 80-foot reflection pool and other water features. The gardens on the north side of the building are more informal, but densely planted and vast.

Photo by Iwan Baan

The creation

The development of the Ismaili Center was led by the Ismaili Council. It was initiated by His Highness Prince Karim Aga Khan IV (1936-2025), and completed under the leadership of his eldest son, Prince Rahim Aga Khan V.

The project was designed and constructed by a team of both local and international firms. Farshid Moussavi Architecture joined forces with structural and facade engineer Hanif Kara, co-founder and creative director of AKT II. DLR Group is the architect and engineer of record, while contractor McCarthy Building Companies built the project. Thomas Woltz, senior principal and owner of landscape architecture firm Nelson Byrd Woltz, along with principal Jeff Aten taking lead on the nine acres of garden space. The project is targeting LEED Gold certification.

The focus on native Texas plants and trees

The center will be recognized as a leading cultural asset for the City of Houston, complementing nearby institutions such as The Menil Collection, Rothko Chapel, Asia Society Texas, and the Museum of Fine Arts, Houston. While the surrounding gardens will add to the other notable Nelson Byrd Woltz projects within close proximity at Memorial Park, Rothko Chapel, and Rice University.

“We’ve been building massive projects in Houston for 12 years,” Woltz says. “We know the horticultural community in the region, and we did a deep, deep dive in ecological research to understand ‘What are the native plants of whatever region?’ It’s just baked into our process. Right when we are starting any project in Houston—right to the river. Look at the soils, ‘What are the plants appropriate to that place?’ Its solar aspect, its humidity, it’s moisture in soils, the shadow of the building.

But then, this idea of taking a section across the state of Texas, so that each of those distinct ecological regions is represented by one of the terraced gardens — so it’s very clear. It’s a diagram of the state of Texas and all of its native plants. This is functioning like a botanic garden and a repository for biodiversity — this is work in service.”

The eco-friendly exterior

The exterior of the building is clad in stone, a durable material with low embodied carbon. The stone cladding is a rainscreen over in-situ ‘fair-faced’ concrete walls, exposed on the interior to minimize additional material use. The concrete mix used has replaced 35-62 percent of Portland cement with fly ash and slag, reducing CO2 emissions by roughly 30 percent compared to standard mixes. The exterior stone rainscreen uses smaller tiles to increase the stone yield, utilizing 20-25 percent more of the irregular blocks they are cut from. This reduction in waste has also lent itself to crafting the cladding in a unique way.

The tessellation of the stone pieces changes across the building's surfaces to create different patterns on different sides of the buildings and at the corners. Relief stone tiles are used to add texture to the facades.

The space for outdoor events

The north-facing botanical gardens that will accommodate the 200-year flood plain offer a 27 foot gradient toward the building. This allowed for various levels of seating and gathering areas that culminate at an elevated terrace that will act as a stage for various events such as plays and concerts. Attendees can stretch out and enjoy the shows from an extensive lawn area that is surrounded by dense gardens of native trees and plants.

The black box theater

A 2,600-square-foot black box multipurpose space which seats 125 people is found on the second floor of the building’s west wing. It can host public events, such as exhibitions, film screenings, theatrical performances, music recitals, and other artistic programs throughout the year. It will also serve as a flexible space for teaching and learning. With acoustic isolation to surrounding spaces and the mechanical mezzanine above, it is designed to operate simultaneously without disrupting other events in the building. Design includes an upper-level control room, pipe grid, and flexible drapery and seating configurations to allow for a wide variety of programming.

The cafe

The center’s café is a 1,600-square-foot, double-height space located in the west wing (Montrose side) that opens onto an enormous terrace, offering visitors the option to enjoy their coffee or food outdoors. The terrace near the cafe is lined by an exterior wall and long, trough-style fountains that aid in noise reduction from Montrose Boulevard. The second-floor wall overlooking the Café is fully glazed, creating visual connection with the levels above.

The prayer hall

The prayer hall is 12,240 square feet, featuring a unique structural system of seven interlocking squares, formed from steel beams spanning the 115-by-115-foot open space. These beams are clad in concrete to enhance durability, beneath which lies a two-layer perforated aluminum ceiling with integrated diffused lighting. Its intricate pattern recalls the traditional jālī screens of Islamic architecture creating a soft, seemingly infinite ceiling effect, adding to the serenity of the prayer hall.

---

A version of this article first appeared on CultureMap.com