March Biosciences is testing its MB-105 cell therapy in a Phase 2 clinical trial for people with difficult-to-treat cancer. Photo via march.bio

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Researchers from Baylor College of Medicine and the University of Houston have developed a new blood-filtering machine that poses fewer risks to pediatric patients with hyperleukocytosis. Photo courtesy UH.

UH, Baylor researchers make breakthrough with new pediatric leukemia treatment device

childhood cancer

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. Photo via Getty Images

Clinical-stage Houston cell therapy company closes $28.4M oversubscribed series A

cha-ching

An emerging biotech company in Houston has closed its series A with outsized success.

March Biosciences' oversubscribed raise brought in $28.4 million of financing with Mission BioCapital and 4BIO Capital leading the pack of investors. The company has now raised more than $51 million in total.

Last year, March Biosciences announced its strategic alliance with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience. CEO Sarah Hein met her co-founder, Max Mamonkin, at the TMC Accelerator for Cancer Therapeutics. Along with fellow co-founder Malcolm Brenner, March Biosciences launched from the Center for Cell and Gene Therapy (Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital). Its goal is to fight cancers that have been unresponsive to existing immunotherapies using its lead asset, MB-105.

An autologous CD5-targeted CAR-T cell therapy, MB-105 is currently in phase-1 trials in patients with refractory T-cell lymphoma and leukemia. The treatment is showing signs of being both safe and effective, meriting a phase-2 trial that will begin early next year. The funds raised from the series A will help to finance the Phase 2 clinical development of MB-105 to expand on the existing data with optimized manufacturing processes.

“This oversubscribed financing enables us to advance our first-in-class CAR-T therapy, MB-105, into a Phase 2 trial for T-cell lymphoma – an indication with an exceptionally poor prognosis and few treatment options,” says Hein. “With the support and confidence of our investors, we are not only advancing our lead program but also expanding our pipeline, underscoring our commitment to delivering best-in-class therapies to patients that can change the treatment paradigm for these challenging cancers.”

But that’s not the only exciting news that Hein and her associates have to report. March Biosciences has recently partnered with cell therapy venture studio, Volnay Therapeutics. Led by highly experienced cell therapy development veterans, the March Biosciences team will work to develop a scalable manufacturing process for MB-105 that will lead to commercialization. Volnay co-founder and CEO Stefan Wildt, who held key R&D leadership positions in cell and gene therapy units at Novartis and Takeda, has also joined the board of March Biosciences. The board of directors is also welcoming Cassidy Blundell of Mission BioCapital and Owen Smith of 4BIO Capital.

“The team at March Biosciences is leveraging powerful science and promising clinical data to tackle cancers with significant unmet need,” says Blundell, a partner at Mission BioCapital. “We're excited to support their journey and believe their focused approach with MB-105 could lead to significant breakthroughs in the CAR-T space.”

The Houston-born company, which is a finalist for the 2024 Houston Innovation Awards, continues to accelerate quickly, in part thanks to its home base. After all, existing local investors like TMC Venture Fund also participated in the new raise. As Hein said last year, “Working with partners here in Houston, we have all the pieces and the community rises to the occasion to support you.”

Rice biochemist Natasha Kirienko and MD Anderson physician-scientist Marina Konopleva made the striking discovery. Photo by Jeff Fitlow

Rice and MD Anderson researchers discover exciting new leukemia treatment

big win

Rice University and MD Anderson researchers have just discovered a potential one-two punch that could, they hope, knock out an insidious disease.

A recent study in the journal Leukemia centers on potential new drugs that, with the help of other medications, can thwart leukemia cells.

Specifically, Rice biochemist Natasha Kirienko and MD Anderson physician-scientist Marina Konopleva screened some 45,000 small-molecule compounds to find a few that targeted mitochondria, according to Rice press materials.

In this innovative new study, the team selected eight of the most promising compounds, identified between five and 30 closely related analogs for each, and conducted tens of thousands of tests to systematically determine how toxic each analog was to leukemia cells. This was measured both when administered individually or in combination with existing chemotherapy drugs like doxorubicin, notes a release.

Previously, Kirienko’s lab had shown the eight compounds targeted energy-producing machinery inside cells called mitochondria. Mitochondria, which work nonstop in every living cell, wear out with use. The chosen eight compounds induce mitophagy, which can be described as how cells decommission and recycle deficient and used-up.

Notably, during times of extreme stress, cells can temporarily forgo mitophagy for an emergency energy boost. Previous research has shown leukemia cells have far more damaged mitochondria than healthy cells and are also more sensitive to mitochondrial damage than healthy cells.

Thus, Kirienko and Konopleva reasoned that mitophagy-inducing drugs might weaken leukemia cells and make them more susceptible to chemotherapy. Synergy — using two or more drugs in treatment — is key.

“The point of synergy is that there are concentrations, or dosages, where a single drug doesn't kill,” Kirienko said. “There is no death of healthy cells or cancer cells. But administering those same concentrations in combination can kill a considerable amount of cancer cells and still not affect healthy cells.”

The team tested the toxicity of its mitophagy-inducing compounds and combinations against acute myeloid leukemia (AML) cells, the most commonly diagnosed form of the disease. They then tested the six most effective AML-killing compounds against other forms of leukemia, finding that five were also effective at killing acute lymphoblastic leukemia (ALL) cells and chronic myelogenous leukemia (CML) cells.

Studies found all the mitophagy-inducing drugs caused far less harm to healthy cells.

Finally, the researchers tested one of the most effective mitochondria-targeting compounds, PS127E, using a cutting-edge technique called a patient-derived xenograft (PDX) model. Also referred to as a “mouse clinical trial,” mice are implanted with cancer cells from a leukemia patient. As the cells grow, the mouse is exposed to a drug or combination of drugs as a closer-than-cells test of the treatment’s effect.

Importantly, PDX tests on one compound, PS127E, showed it was effective at killing AML cells in mice, Rice notes, signaling promising news.

“Although this is very promising, we’re still some distance from having a new treatment we can use in the clinic,” Kirienko added. “We still have a lot to discover. For example, we need to better understand how the drugs work in cells. We need to refine the dose we think would be best, and perhaps most importantly, we need to test on a wide variety of AML cancers. AML has a lot of variations, and we need to know which patients are most likely to benefit from this treatment and which are not. Only after we’ve done that work, which may take a few years, would we be able to start testing in humans.”

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5+ must-know application deadlines for Houston innovators

apply now

Editor's note: As 2026 ramps up, the Houston innovation scene is looking for the latest groups of innovative startups that'll make an impact. A number of accelerators and competitions have opened applications. Read below to see which might be a good fit for you or your venture. And take careful note of the deadlines. Please note: this article may be updated to include additional information and programs.

Did we miss an accelerator or competition accepting applications? Email innoeditor@innovationmap.com for editorial consideration.

2026 HCC Business Plan Competition

Deadline: Jan. 26

Details: HCC’s annual Business Plan Competition (BPC) is an opportunity for proposed, startup and existing entrepreneurs to develop focused plans to start or grow their businesses. Accepted teams will be announced and training will begin in late February and run through early June, with six free, three-hour training sessions. Advising will be provided to each accepted team. Applicants can apply as a team of up to five persons. Finalists will present to to gudges on May 27, 2026. Last year, $26,000 was awarded in seed money to the top five teams. In-kind prizes were also awarded to all graduating teams including free products, services and memberships, with an estimated in-kind value totaling $147,000. Find more information here.

University of Houston Technology Bridge Innov8 Hub (Spring 2026)

Deadline: Jan . 30

Details: UHTB Innov8 Hub’s immersive, 12-week startup acceleration program designed to help early-stage founders launch and scale their technology startups. Selected participants will gain access to expert mentors and advisors, collaborate with a cohort of peers, and compete for cash prizes during our final pitch event. The cohort begins Feb. 16, 2026. The program culminates in Pitch Day, where participants present their ventures to an audience of investors and partners from across the UH innovation ecosystem. Find more information here.

Rice Business Plan Competition 2026

Deadline: Jan. 31

Details: The Rice Business Plan Competition, hosted by the Rice Alliance for Technology and Entrepreneurship, gives collegiate entrepreneurs real-world experience to pitch their startups, enhance their business strategy and learn what it takes to launch a successful company. Forty-two teams will compete for more than $1 million in cash, investments and prizes on April 9-11, 2026. Find more information here.

Rice Veterans Business Battle 2026

Deadline: Jan. 31

Details: The Rice Veterans Business Battle is one of the nation’s largest pitch competitions for veteran-led startups, providing founders with mentorship, exposure to investors and the opportunity to compete for non-dilutive cash prizes. The event has led to more than $10 million of investments since it began in 2015. Teams will compete April 8-9, 2026. Find more information here.

TEX-E Fellows Application 2026-2027

Deadline: Feb. 10

Details: The TEX‑E Fellowship is a hands-on program designed for students interested in energy, climate, and entrepreneurship across Texas. It connects participants with industry mentors, startup founders, investors and academic leaders while providing practical, "real-world" experience in customer discovery, business modeling, and energy-transition innovation. Fellows gain access to workshops, real-world projects, and a statewide network shaping the future of energy and climate solutions. Participants must be a student at PVAMU, UH, UT Austin, Rice University, MIT or Texas A&M. Find more information here.

Greentown Go Make 2026

Deadline: March 10

Details: Greentown Go Make 2026 is an open-innovation program with Shell and Technip Energies. The six-month program is advancing industrial decarbonization by accelerating catalytic innovations. Selected startups will gain access to a structured platform to engage leadership from Shell and Technip Energies and explore potential partnership outcomes, including pilots and demonstrations. They’ll also receive networking opportunities, partnership-focused programming, and marketing visibility throughout the program. The cohort will be selected in May. Find more information here.

Houston startups closed $1.75 billion in 2025 VC funding, says report

by the numbers

Going against national trends, Houston-area startups raised 7 percent less venture capital last year than they did in 2024, according to the new PitchBook-NVCA Venture Monitor report.

The report shows local startups collected $1.75 billion in venture capital in 2025, down from $1.89 billion the previous year.

Houston-based geothermal energy company Fervo Energy received a big chunk of the region’s VC funding last year. Altogether, the startup snagged $562 million in investments, as well as a $60 million extension of an existing loan and $45.6 million in debt financing. The bulk of the 2025 haul was a $462 million Series E round.

In the fourth quarter of last year, Houston-area VC funding totaled $627.68 million. That was a 22 percent drop from $765.03 million during the same period in 2024. Still, the Q4 total was the biggest quarterly total in 2025.

Across the country, startups picked up $339.4 trillion in VC funding last year, a 59 percent increase from $213.2 trillion in 2024, according to the report. Over the last 10 years, only the VC total in 2021 ($358.2 trillion) surpassed the total from 2025.

Nationwide, startups in the artificial intelligence and machine learning sector accounted for the biggest share of VC funding (65.4 percent) in 2025, followed by software-as-a-service (SaaS), big data, manufacturing, life sciences and healthtech, according to the report.

“Despite an overall lack of new fundraising and a liquidity market that did not shape up as hoped in 2025, deal activity has begun a phase of regrowth, with deal count estimates showing increases at each stage, and deal value, though concentrated in a small number of deals, falling just [8 percent] short of the 2021 figure,” the report reads.

Sandbox VR brings new gaming center to Houston's tech-savvy population

Get In The Game

Sandbox VR, a futuristic, full-body virtual reality gaming experience, has announced it will enter the Houston market this month, opening its first local gaming center on January 23.

"Houston's reputation as a hub for innovation and technology makes it a perfect fit for Sandbox VR," said Steve Zhao, CEO and founder of Sandbox VR, in a statement. "The city's diverse, tech-savvy population and strong entertainment culture create an ideal environment for our immersive VR experiences. LOL Entertainment continues to exceed our expectations as a partner, and we're excited to bring our cutting-edge virtual reality gaming to Texas's largest city."

The new gaming center opens Friday, January 23 at 797 Sorella Court in CityCentre.

One of the games that stands out is the Stranger Things: Catalyst game, based on the blockbuster Netflix television series. Groups of one to six players will be dropped into the sinister Hawkins Lab and the mysterious Upside Down to fight Demogorgons and other monsters. The game features Matthew Modine reprising his role as Dr. Martin "Papa" Brenner, who imbues players with psychic powers.

Other games include the supernatural pirate title The Curse of Davy Jones and other Netflix tie-ins based on Zack Snyder's Rebel Moon and Squid Game. Sandbox VR offers fully-immersive group play activities that range from combat to puzzle solving for a variety of age groups.

The opening of Sandbox VR is another part of the expansion of LOL Entertainment, who touts itself as one of the pre-eminent hosts of immersive and gaming experiences in the U.S. Sandbox VR will be their first entry into the Houston market, with another immersive group adventure game, Time Mission, set to open at the the Marq'E Entertainment District later this year.

“Bringing Sandbox VR to CityCentre Houston is a big milestone for LOL Entertainment, for Sandbox VR, and for this market,” said Rob Cooper, CEO of LOL Entertainment. “Houston is a fast-growing, experience-driven city, and we’re excited to give locals and visitors a truly immersive, social gaming destination that you can’t replicate anywhere.”

Presale tickets for the grand opening of Sandbox VR are available here. Standard pricing is $55-$65 per event, but Sandbox VR is running a special for 30 percent off with code OPEN30 for those who purchase before Thursday, January 22. Presale buyers are also entered into a drawing for free Sandbox VR for one year.

---

This article originally appeared on CultureMap.com.