At-home COVID-19 testing is about to get lit. Photo via Getty Images

A Houston-based research team is tapping glow-in-the-dark materials to upgrade at-home rapid COVID-19 testing.

Researchers at the University of Houston have been rethinking the lateral flow assay (LFA) test used for at-home COVID-19 diagnostics. The traditional method indicates the sample's results with colored lines.

“We are making those lines glow-in-the-dark so that they are more detectable, so the sensitivity of the test is better,” says Richard Willson, a professor at the University of Houston, in a UH news release. He previously created a smartphone-based diagnostics app.

Willson's inspiration came from a familiar and nostalgic method — the glow-in-the-dark stars in a child's bedroom. In Willson's case, it was his daughter's bedroom, and within a few days his team of students and postdocs was designing a test featuring glowing nanoparticles made of phosphors.

The team evolved into a spin-off company called Clip Health, originally founded as Luminostics by two of the researchers. The operation is again evolving with new glowing applications.

“In this new development, there are two tricks. First, we use enzymes, proteins that catalyze reactions, to drive reactions that emit light, like a firefly. Second, we attached those light-emitting enzymes onto harmless virus particles, along with antibodies that bind to COVID proteins,” says Willson in the Royal Society of Chemistry’s journal Analyst.

The test now also can be read with a smartphone app. The group is also entertaining additional tests for other diseases.

“This technology can be used for detecting all kinds of other things, including flu and HIV, but also Ebola and biodefense agents, and maybe toxins and environmental contaminants and pesticides in food,” says Willson.

In addition to Willson, the original technology was explained in a paper with co-authors:

  • Katerina Kourentzi, University of Houston research associate professor of chemical and biomolecular engineering
  • Jacinta Conrad, Frank M. Tiller Associate Professor of Chemical and Biomolecular Engineering,
  • UH researchers Maede Chabi, Binh Vu, Kristen Brosamer, Maxwell Smith, and Dimple Chavan

Researcher Richard Willson says he was inspired by the glow-in-the-dark scars on his daughter's bedroom ceiling. Photo via UH.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy giant makes moves on emissions with Astros deal, new tech in the Permian Basin

Houston-based energy company Occidental is capturing a ton of attention with its carbon capture initiative.

Occidental’s carbon capture subsidiary, 1PointFive, recently said it’s developing a carbon capture and sequestration hub on a 55,000-acre site along the Gulf Coast in Southeast Texas. The hub will be able to hold about 1.2 million metric tons of carbon dioxide.

The Bluebonnet Hub, expected to be operating in 2026, will be located in Chambers, Liberty, and Jefferson counties near coastal refineries, chemical plants, and manufacturing facilities. Chambers County is the Houston metro area.

“This hub is located between two of the largest industrial corridors in Texas so captured CO2 can be efficiently transported and safely sequestered,” says Jeff Alvarez, president of sequestration at 1PointFive. “Rather than starting from scratch with individual capture and sequestration projects, companies can plug into this hub for access to shared carbon infrastructure.”

Home run on emissions

Another development at 1PointFive involves the Houston Astros baseball team.

The Astros recently agreed to buy CO2 removal credits from 1PointFive’s carbon capture plant being built in Ector County, whose county seat is Odessa. Under this deal, CO2 captured by the company’s equipment will be sequestered in underground saline reservoirs that aren’t affiliated with oil and gas production.

Over the next three years, the Astros will use the removal credits to help the team achieve a carbon-neutral footprint at Minute Maid Park.

“We remain committed to continuous improvement of our stadium for our fans, and purchasing carbon removal credits is an important investment for us,” Marcel Braithwaite, senior vice president of business operations for the Astros, says in a news release.

Progress in the Permian Basin

Furthermore, 1PointFive is making progress on its carbon capture plant being developed in West Texas’ Permian Basin. The company recently tapped Orlando, Florida-based Siemens Energy to supply two compressors for the plant, which is set to capture more than 500,000 metric tons of CO2 per year.

Vicki Hollub, president and CEO of Occidental, says in a news release that the Permian Basin plant will help meet the Paris Agreement’s Paris climate change goals and reduce global emissions.

The Permian Basin facility, with an estimated price tag of $800 million to $1 billion, is on track to open by late 2024.

The real estate challenges, opportunities Houston faces as hub for biotech, according to expert

guest column

In the decade prior to COVID, when it came to early stage biotech companies establishing a foothold in Houston, space-wise, there were only a handful of options to choose from. Because of specialized equipment needs, including in many cases, the requirement for vent hoods, multiple sinks, and 24/7 air-conditioned space, traditional flex type projects were not a ready-made option. UH’s Technology Bridge offered those amenities, and while it worked for some, it was not intended as a permanent business home. Most emerging biotech firms found space that was a partial fit, and modified it to work (at their cost).

Houston’s Rise on the National Stage

For a variety of reasons, including its broad talent pool, lower cost of operations, and more favorable business climate, Houston has continued to attract biotech companies from other states. Following on the heels of new and expanding life science firms, and a supportive ecosystem, investor interest in building and purchasing properties to meet their specialized requirements has been a natural result. Unlike traditional office occupiers, lab users need physical space, and are not candidates for a hybrid or work from home model.

TMC Proximity Premium

Land costs inside Loop 610 have historically trended higher than suburban alternatives. For this reason, the newest projects completed near TMC like Helix Park and the planned Bioport are focused on much larger firms and institutions with the ability to commit to a long lease term and pay a premium rent. A second tier of real estate investors has also entered the market, however, purchasing nearby 80’s vintage projects, upgrading them, and repurposing the space to meet demand from mid-size or less creditworthy biotech companies. Existing small to mid-size tenants currently housed in these projects can expect to see bumps in both rent and expenses.

As an alternative to close-in options, but within a reasonable drive of the TMC, Pearland, Sugar Land and Stafford have increasingly become a location choice for biotech firms. Pearland’s EDC has targeted life science companies needing custom-built manufacturing facilities with economic incentives for some time. Lonza, Merit Medical, and formerly St. Paul-based Cardiovascular Systems are just three recent examples touted on their website.

Planning for Affordable Lab Space Options

Management teams for early stage companies are stretched thin, and are not always prepared for the time and money it takes to find and equip office/lab space.

Not all suburban landlords want to incur the sizeable costs for a customized build out, which can range between $40 and $200 per square foot. Entrepreneurs are also surprised by the 4-6 months of lead time it typically takes to identify space options, negotiate a lease, and permit and build the improvements (including the unexpected costs of bringing an older project in compliance with current energy and building codes).

However, with realistic expectations about these challenges, the good news is that once settled into a facility that is a fit, Houston’s emerging biotech companies can thrive and grow.

------

Julie King is President of NB Realty Partners. She has mentored and provided commercial real estate advice to technology, biotech, and early-stage companies for over 23 years.

Houston space tech company secures third NASA mission, reveals new spacesuits

ready for liftoff

A Houston-based space tech company has revealed details on two of its commercial partnerships with NASA.

NASA and Axiom Space have again signed a mission order for a private astronaut mission to the International Space Station. The mission will commence sometime in November or on and will be from the agency’s NASA’s Kennedy Space Center in Florida. Axiom Mission 3 is the third mission of its kind and, according to a statement from NASA, is expected to be a 14-day trip.

The ISS's Multilateral Crew Operations Panel will approve four proposed crew members and two back up crew submitted by Axiom for the Ax-3 mission. The crew will be expected to train for their flight with NASA, international partners, and SpaceX beginning this spring, according to NASA.

“Axiom Space’s selection to lead the next private astronaut mission to the International Space Station enables us to continue expanding access to nations, academia, commercial entities, and emerging industries to research, test, and demonstrate new technologies in microgravity,” says Michael Suffredini, CEO and president of Axiom Space, in the release. “As NASA’s focus shifts back to the Moon and on to Mars, we are committed to transforming low-Earth orbit into a global space marketplace, where access to space moves beyond the partners of the space station to nations, institutions and individuals with new ideas fueling a thriving human economy beyond Earth.”

Axiom's historic first commercial launch was in spring of 2022, and Ax-2, which will launch the first Saudi astronauts to visit the ISS, is expected to launch this spring. In addition to these two missions, Axiom has been tasked by NASA to develop spacesuits and space station technology.

After several months of working on the suits, Axiom has revealed the details of the technology that will be worn by NASA astronauts returning to the moon on the Artemis III mission that's scheduled to land near the lunar south pole in 2025.

The newly revealed spacesuit will be worn by the first woman and first person of color to visit the moon. Photo courtesy of Axiom Space

“We’re carrying on NASA’s legacy by designing an advanced spacesuit that will allow astronauts to operate safely and effectively on the Moon,” says Suffredini in a statement from the company. “Axiom Space’s Artemis III spacesuit will be ready to meet the complex challenges of the lunar south pole and help grow our understanding of the Moon in order to enable a long-term presence there.”

Called the Axiom Extravehicular Mobility Unit, or AxEMU, the prototype was revealed at Space Center Houston’s Moon 2 Mars Festival today, March 15. According to Axiom, a full fleet of training spacesuits will be delivered to NASA by late this summer.

At the same time as the Ax-3 mission announcement, NASA also announced that it has selected Firefly Aerospace of Cedar Park, Texas, to carry multiple payloads to the far side of the Moon. According to NASA, the commercial lander will deliver two agency payloads, as well as communication and data relay satellite for lunar orbit, which is an European Space Agency collaboration with NASA.

The contract — awarded for around $112 million — is targeted to launch in 2026 through NASA’s Commercial Lunar Payload Services, or CLPS, initiative, and part of the agency’s Artemis program. It's the second award to Firefly under the CLPS initiative.

“The diversity of currently available commercial orbital human spaceflight opportunities is truly astounding. NASA’s commercial crew flights to the space station for our government astronauts paved the way for fully private missions to space like Inspiration4 and Polaris as well as private astronaut missions to the orbiting laboratory like the one we are announcing today,” says Phil McAlister, director of commercial space at NASA Headquarters in Washington, in the release. “We are starting to see the incorporation of space into our economic sphere, and it is going to revolutionize the way people see, use, and experience space.”