Ben Jawdat, CEO and founder of Revterra, joins the Houston Innovators Podcast. Photo via LinkedIn

With more and more electric vehicles on the road, existing electrical grid infrastructure needs to be able to keep up. Houston-based Revterra has the technology to help.

"One of the challenges with electric vehicle adoption is we're going to need a lot of charging stations to quickly charge electric cars," Ben Jawdat, CEO and founder of Revterra, says on the Houston Innovators Podcast. "People are familiar with filling their gas tank in a few minutes, so an experience similar to that is what people are looking for."

To charge an EV in ten minutes is about 350 kilowatts of power, and, as Jawdat explains, if several of these charges are happening at the same time, it puts a tremendous strain on the electric grid. Building the infrastructure needed to support this type of charging would be a huge project, but Jawdat says he thought of a more turnkey solution.

Revterra created a kinetic energy storage system that enables rapid EV charging. The technology pulls from the grid, but at a slower, more manageable pace. Revterra's battery acts as an intermediary to store that energy until the consumer is ready to charge.

"It's an energy accumulator and a high-power energy discharger," Jawdat says, explaining that compared to an electrical chemical battery, which could be used to store energy for EVs, kinetic energy can be used more frequently and for faster charging.

Jawdat, who is a trained physicist with a PhD from the University of Houston and worked as a researcher at Rice University, says some of his challenges were receiving early funding and identifying customers willing to deploy his technology.

Last year, Revterra raised $8.5 million in a series A funding round. Norway’s Equinor Ventures led the round, with participation from Houston-based SCF Ventures and At One Ventures. Previously, Revterra raised nearly $500,000 through a combination of angel investments and a National Science Foundation grant.

The funding has gone toward growing Revterra's team, including onboarding three new engineers with some jobs still open, Jawdat says. Additionally, Revterra is building out its new lab space and launching new pilot programs.

Ultimately, Revterra, an inaugural member of Greentown Houston, hopes to be a major player within the energy transition.

"We really want to be an enabling technology in the renewable energy transition," Jawdat says. "One part of that is facilitating the development of large-scale, high-power, fast-charging networks. But, beyond that, we see this technology as a potential solution in other areas related to the clean energy transition."

He shares more about what's next for Revterra on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas nonprofit grants $68.5M to Houston organizations for recruitment, research

Three prominent institutions in Houston will be able to snag a trio of high-profile cancer researchers thanks to $12 million in new funding from the Cancer Prevention and Research Institute of Texas.

The biggest recruitment award — $6 million — went to the University of Texas MD Anderson Center to lure researcher Xiling Shen away from the Terasaki Institute for Biomedical Innovation in Los Angeles.

Shen is chief scientific officer at the nonprofit Terasaki Institute. His lab there studies precision medicine, including treatments for cancer, from a “systems biology perspective.”

He also is co-founder and former CEO of Xilis, a Durham, North Carolina-based oncology therapy startup that raised $70 million in series A funding in 2021. Before joining the institute in 2021, the Stanford University graduate was an associate professor at Duke University in Durham.

Shen and Xilis aren’t strangers to MD Anderson.

In 2023, MD Anderson said it planned to use Xilis’ propriety MicroOrganoSphere (MOS) technology for development of novel cancer therapies.

“Our research suggests the MOS platform has the potential to offer new capabilities and to improve the efficiency of developing innovative drugs and cell therapies over current … models, which we hope will bring medicines to patients more quickly,” Shen said in an MD Anderson news release.

Here are the two other Cancer Prevention and Research Institute of Texas (CPRIT) awards that will bring noted cancer researchers to Houston:

  • $4 million to attract David Sarlah to Rice University from the University of Illinois, where he is an associate professor of chemistry. Sarlah’s work includes applying the principles of chemistry to creation of new cancer therapies.
  • $2 million to lure Vishnu Dileep to the Baylor College of Medicine from the Massachusetts Institute of Technology (MIT), where he is a postdoctoral fellow. His work includes the study of cancer genomes.

CPRIT also handed out more than $56.5 million in grants and awards to seven institutions in the Houston area. Here’s the rundown:

  • MD Anderson Cancer Center — Nearly $25.6 million
  • Baylor College of Medicine — Nearly $11.5 million
  • University of Texas Health Science Center at Houston — More than $6 million
  • Rice University — $4 million
  • University of Texas Medical Branch at Galveston — More than $3.5 million
  • Methodist Hospital Research Institute — More than $3.3 million
  • University of Houston — $1.4 million

Dr. Pavan Reddy, a CPRIT scholar who is a professor at the Baylor College of Medicine and director of its Dan L Duncan Comprehensive Cancer Care Center, says the CPRIT funding “will help our investigators take chances and explore bold ideas to make innovative discoveries.”

The Houston-area funding was part of nearly $99 million in grants and awards that CPRIT recently approved.

Houston space company's lunar lander touches down on the moon in historic mission

touchdown

A private lander on Thursday made the first U.S. touchdown on the moon in more than 50 years, but managed just a weak signal back until flight controllers scrambled to gain better contact.

Despite the spotty communication, Intuitive Machines, the company that built and managed the craft, confirmed that it had landed upright. But it did not provide additional details, including whether the lander had reached its intended destination near the moon’s south pole. The company ended its live webcast soon after identifying a lone, weak signal from the lander.

“What we can confirm, without a doubt, is our equipment is on the surface of the moon,” mission director Tim Crain reported as tension built in the company’s Houston control center.

Added Intuitive Machines CEO Steve Altemus: “I know this was a nail-biter, but we are on the surface and we are transmitting. Welcome to the moon.”

Data was finally starting to stream in, according to a company announcement two hours after touchdown.

The landing put the U.S. back on the surface for the first time since NASA’s famed Apollo moonwalkers.

Intuitive Machines also became the first private business to pull off a lunar landing, a feat achieved by only five countries. Another U.S. company, Astrobotic Technology, gave it a shot last month, but never made it to the moon, and the lander crashed back to Earth. Both companies are part of a NASA-supported program to kick-start the lunar economy.

Astrobotic was among the first to relay congratulations. “An incredible achievement. We can’t wait to join you on the lunar surface in the near future,” the company said via X, formerly Twitter.

Intuitive Machines “aced the landing of a lifetime,” NASA Administrator Bill Nelson tweeted.

The final few hours before touchdown were loaded with extra stress when the lander's laser navigation system failed. The company's flight control team had to press an experimental NASA laser system into action, with the lander taking an extra lap around the moon to allow time for the last-minute switch.

With this change finally in place, Odysseus descended from a moon-skimming orbit and guided itself toward the surface, aiming for a relatively flat spot among all the cliffs and craters near the south pole.

As the designated touchdown time came and went, controllers at the company's command center anxiously awaited a signal from the spacecraft some 250,000 miles (400,000 kilometers) away. After close to 15 minutes, the company announced it had received a weak signal from the lander.

Launched last week, the six-footed carbon fiber and titanium lander — towering 14 feet (4.3 meters) — carried six experiments for NASA. The space agency gave the company $118 million to build and fly the lander, part of its effort to commercialize lunar deliveries ahead of the planned return of astronauts in a few years.

Intuitive Machines' entry is the latest in a series of landing attempts by countries and private outfits looking to explore the moon and, if possible, capitalize on it. Japan scored a lunar landing last month, joining earlier triumphs by Russia, U.S., China and India.

The U.S. bowed out of the lunar landscape in 1972 after NASA's Apollo program put 12 astronauts on the surface. Astrobotic of Pittsburgh gave it a shot last month, but was derailed by a fuel leak that resulted in the lander plunging back through Earth's atmosphere and burning up.

Intuitive Machines’ target was 186 miles (300 kilometers) shy of the south pole, around 80 degrees latitude and closer to the pole than any other spacecraft has come. The site is relatively flat, but surrounded by boulders, hills, cliffs and craters that could hold frozen water, a big part of the allure. The lander was programmed to pick, in real time, the safest spot near the so-called Malapert A crater.

The solar-powered lander was intended to operate for a week, until the long lunar night.

Besides NASA’s tech and navigation experiments, Intuitive Machines sold space on the lander to Columbia Sportswear to fly its newest insulating jacket fabric; sculptor Jeff Koons for 125 mini moon figurines; and Embry-Riddle Aeronautical University for a set of cameras to capture pictures of the descending lander.