The stock market has always been hard, if not impossible, to forecast. Image via Getty Images

What do you think the Standard & Poor’s 500 index will do over the next year?

When Rice Business finance professor Kevin Crotty asks his MBA students this question, the answers are all over the map. Some students expect the overall return on the stock market to be 10 percent, while others predict a loss of 20 percent.

This guessing game is closer to real life than many people realize. Experienced investors, people who have watched the stock market ebb and flow for many years, know that making predictions is a risky business. “Many money managers are more confident choosing individual stocks than trying to time the market,” says finance professor Kevin Crotty.

For most of the past century, academics have applied their power of analysis to understanding and predicting the stock market. Recently, some finance researchers have taken a closer look at option prices—the price paid for the right to buy or sell a security (like a stock or bond) at a specified price in the future. Combining economic theory with high-frequency options price data, they argued that they could estimate the expected return on the market in real-time, which would represent a tremendous development for finance practitioners and academics alike.

Crotty teamed up with Kerry Back, a fellow Rice Business professor, and Seyed Mohammad Kazempour, a finance Ph.D. student at the Jones Graduate School of Business, to evaluate whether the new predictors based on option prices really are a valuable forecasting tool. “Options are essentially a forward-looking contract, so it’s possible that they could be used to create a forward-looking measure of expected returns,” says Kazempour.

Economic theory suggests that the new predictors might systematically underestimate expected returns. The team set out to test if this may be the case, and if so, whether the predictors are useful as a forecasting tool. In their paper, “Validity, Tightness, and Forecasting Power of Risk Premium Bounds,” the Rice Business researchers ran the predictors through a more rigorous set of statistical tests that provide more power to detect whether the predictors systematically underestimate expected returns. The statistical tests used in previous research on the topic were less stringent, leading to conclusions that the predictors do not underestimate expected returns.

In short, the new predictors didn’t pass the more stringent tests. The researchers found that forecasts built on stock options consistently underestimated market returns. Moreover, the predictors are enough of an underestimate that they are not very useful as forecasts of market returns.

The results were somewhat anticlimatic, the researchers admit. If the option-based predictors had panned out, it could have become an innovative new tool for thinking about market timing for asset managers as well as investment decision-making for corporate finance projects. “Trying to estimate expected market returns is closely related to whether corporations decide to invest in projects,” notes Crotty. “The expected market return is an input in estimating the cost of capital when evaluating projects, and I explain in my MBA courses that we don’t have very precise estimates for this input. During this research project, I kept thinking about how cool it would be if we really had a better estimate,” he says.

Their research doesn’t end here. Crotty and Back have already begun brainstorming ways to potentially improve the option-based forecasting tool so that it can become more accurate.

At best, though, using option prices as a forecasting tool will only be one ingredient out of many that investors use to make decisions. “This tool may inform money management, but it will never drive it,” says Back.

For now, at least, the Rice researchers believe that trying to predict the stock market is still a very risky game.

------

This article originally ran on Rice Business Wisdom and was based on research from Rice Professors Kerry Back and Kevin Crotty.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”