Bastion Technologies has been tapped to provide safety and mission services for NASA's Marshall Space Flight Center in Alabama. Photo via nasa.gov.

NASA has granted Houston-based Bastion Technologies Inc. the Safety and Mission Assurance II (SMAS II) award with a maximum potential value of $400 million.

The award stipulates that the engineering and technical services company provide safety and mission services for the agency’s Marshall Space Flight Center in Huntsville, Alabama, according to a release from NASA.

In the deal, Bastion’s services include system safety, reliability, maintainability, software assurance, quality engineering, independent assessment, institutional safety and pressure systems. Bastion’s work will support research and development projects, hardware fabrication and testing, spaceflight and science missions, and other activities at NASA Marshall, Michoud Assembly Facility in New Orleans, Stennis Space Center in Bay St. Louis, Mississippi, NASA’s Kennedy Space Center in Florida and various other sites.

The first base period for the SMASS II award has already begun, with the option for a base ordering period of four years to extend services through March 2034.

Bastion has been a key player in NASA’s Artemis program, and was also awarded a contract to support occupational safety, health and mission assurance at NASA’s Ames Research Center in Silicon Valley in 2024. Also in 2024, Bastion was awarded the NASA Glenn Research Center (GRC) Environmental, Safety, Health, and Mission Assurance (ESHMA) contract.

Since 1998, Bastion has held over 350 contracts at almost every NASA center and most major aerospace industry partners.

Arrow Science and Technology will team up with Quantum Space on a NASA-backed orbital transfer vehicle study. Photo via arrowscitech.com.

NASA taps Houston-area company to explore low-cost spacecraft delivery

Webster-based Arrow Science and Technology is one of six companies picked by NASA to study low-cost ways to launch and deliver spacecraft for difficult-to-reach orbits.

In all, nine studies will be performed under a roughly $1.4 million award from NASA. Another Texas company, Cedar Park-based Firefly Aerospace, is also among the six companies working on the studies.

“With the increasing maturity of commercial space delivery capabilities, we’re asking companies to demonstrate how they can meet NASA’s need for multispacecraft and multiorbit delivery to difficult-to-reach orbits beyond current launch service offerings,” Joe Dant, a leader of the Launch Services Program at NASA’s Kennedy Space Center in Florida, said in a news release. “This will increase unique science capability and lower the agency’s overall mission costs.”

Arrow is teaming up with Rockville, Maryland-based Quantum Space for its study. Quantum’s Ranger orbital transfer vehicle provides payload delivery services for spacecraft heading to low-Earth and lunar orbits.

Arrow, a Native American-owned small business, offers technical support and hardware manufacturing services for the space and defense industries.

James Baker, founder and president of Arrow, said in a news release that the combination of his company’s deployment systems with Quantum’s Ranger vehicle “allows our customers the ability to focus on the development of their payload[s] while we take care of getting them where they need to be.”

“This is an exciting opportunity to demonstrate the unique capabilities of our highly maneuverable Ranger spacecraft, which will expand NASA’s options for reaching dynamic and challenging … orbits,” Kerry Wisnosky, CEO of Quantum Space, added in the release.

The nine studies are scheduled to be completed by mid-September.

NASA said it will use the studies’ findings “to inform mission design, planning, and commercial launch acquisition strategies for risk-tolerant payloads, with a possibility of expanding delivery services to larger-sized payloads and to less risk-tolerant missions in the future.”

Dr. Bernard Harris logged 437 hours in space and was the first Black astronaut to walk in space. Photo courtesy University of Houston.

Houstonian and first Black astronaut to walk in space named to Hall of Fame

out of this world

University of Houston alumnus Dr. Bernard Harris, who was the first Black astronaut to walk in space, is being inducted into the Astronaut Hall of Fame.

The induction ceremony will be held May 31 at the Kennedy Space Center Visitor Complex in Cape Canaveral, Florida.

“Being inducted into the Astronaut Hall of Fame is a tremendous honor, made even more special by the fact that it comes from my peers,” Harris says in a UH news release. “This recognition isn’t just about my accomplishments. It is also a testament to the teamwork and dedication of everyone who shared this amazing journey with me along the way.”

Harris and former astronaut Peggy Whitson, who spent more time in space than any other woman, will join 109 other astronauts inducted into the Hall of Fame. The Astronaut Scholarship Foundation selects the honorees.

Harris, a Texas native who spent much of his childhood in Houston and San Antonio, earned a bachelor’s degree in biology from UH in 1978 and went on to medical school. After completing his residency at the Mayo Clinic and a fellowship at NASA’s Ames Research Center, he joined NASA as a clinical scientist and flight surgeon. He was chosen for the astronaut training program in 1990 and became an astronaut a year later.

In 1993, Harris flew his first mission on Space Shuttle Columbia, during which he conducted research and experiments in physical and life sciences. During his second mission, on Space Shuttle Discovery in 1995, Harris became the first Black astronaut to walk in space. In total, Harris logged 437 hours in space and traveled over 7 million miles.

After leaving NASA, Harris founded the Houston-based investment firm Vesalius Ventures to support emerging medical technology and devices. He also focuses on philanthropy through The Harris Foundation, a Houston-based nonprofit that empowers socially and economically disadvantaged students and communities.

“Space exploration has always been about pushing boundaries, inspiring future generations and proving that the impossible is achievable,” Harris says. “I am grateful for the opportunities that I have been given, and I hope to continue empowering others to reach for the stars.”

Intuitive Machines will study challenges related to carrying cargo on its lunar lander and hauling cargo on the moon. Photo courtesy of NASA

Houston space company lands latest NASA deal to advance lunar logistics

To The Moon

Houston-based space exploration, infrastructure, and services company Intuitive Machines has secured about $2.5 million from NASA to study challenges related to carrying cargo on the company’s lunar lander and hauling cargo on the moon. The lander will be used for NASA’s Artemis missions to the moon and eventually to Mars.

“Intuitive Machines has been methodically working on executing lunar delivery, data transmission, and infrastructure service missions, making us uniquely positioned to provide strategies and concepts that may shape lunar logistics and mobility solutions for the Artemis generation,” Intuitive Machines CEO Steve Altemus says in a news release.

“We look forward to bringing our proven expertise together to deliver innovative solutions that establish capabilities on the [moon] and place deeper exploration within reach.”

Intuitive Machines will soon launch its lunar lander on a SpaceX Falcon 9 rocket to deliver NASA technology and science projects, along with commercial payloads, to the moon’s Mons Mouton plateau. Lift-off will happen at NASA’s Kennedy Space Center in Florida within a launch window that starts in late February. It’ll be the lander’s second trip to the moon.

In September, Intuitive Machines landed a deal with NASA that could be worth more than $4.8 billion.

Under the contract, Intuitive Machines will supply communication and navigation services for missions in the “near space” region, which extends from the earth’s surface to beyond the moon.

The five-year deal includes an option to add five years to the contract. The initial round of NASA funding runs through September 2029.

SpaceX's Dragon capsule docked onto the ISS and will return to Earth in February. Photo via SpaceX

Stuck NASA astronauts welcome SpaceX capsule that'll bring them home next year

rescue mission

The two astronauts stuck at the International Space Station since June welcomed their new ride home with Sunday’s arrival of a SpaceX capsule.

SpaceX launched the rescue mission on Saturday with a downsized crew of two astronauts and two empty seats reserved for Butch Wilmore and Suni Williams, who will return next year. The Dragon capsule docked in darkness as the two craft soared 265 miles (426 kilometers) above Botswana.

NASA switched Wilmore and Williams to SpaceX following concerns over the safety of their Boeing Starliner capsule. It was the first Starliner test flight with a crew, and NASA decided the thruster failures and helium leaks that cropped up after liftoff were too serious and poorly understood to risk the test pilots’ return. So Starliner returned to Earth empty earlier this month.

The Dragon carrying NASA’s Nick Hague and the Russian Space Agency’s Alexander Gorbunov will remain at the space station until February, turning what should have been a weeklong trip for Wilmore and Williams into a mission lasting more than eight months.

Two NASA astronauts were pulled from the mission to make room for Wilmore and Williams on the return leg.

“I just want to say welcome to our new compadres,” Williams, the space station commander, said once Hague and Gorbunov floated inside and were embraced by the nine astronauts awaiting them.

Hague said it was a smooth flight up. “Coming through the hatch and seeing all the smiles, and as much as I've laughed and cried in the last 10 minutes, I know it's going to be an amazing expedition," he said.

NASA likes to replace its station crews every six months or so. SpaceX has provided the taxi service since the company’s first astronaut flight in 2020. NASA also hired Boeing for ferry flights after the space shuttles were retired, but flawed software and other Starliner issues led to years of delays and more than $1 billion in repairs.

Starliner inspections are underway at NASA’s Kennedy Space Center, with post-flight reviews of data set to begin this week.

“We’re a long way from saying, ‘Hey, we’re writing off Boeing,’” NASA’s associate administrator Jim Free said at a pre-launch briefing.

The arrival of two fresh astronauts means the four who have been up there since March can now return to Earth in their own SpaceX capsule in just over a week, bringing the station's crew size back down to the normal seven. Their stay was extended a month because of the Starliner turmoil.

Although Saturday’s liftoff went well, SpaceX said the rocket’s spent upper stage ended up outside its targeted impact zone in the Pacific because of a bad engine firing. The company has halted all Falcon launches until it figures out what went wrong.was extended a month because of the Starliner turmoil.

Axiom Space has announced plans for its third commercial space launch and revealed details of its high-tech spacesuit. Photo courtesy of NASA

Houston space tech company secures third NASA mission, reveals new spacesuits

ready for liftoff

A Houston-based space tech company has revealed details on two of its commercial partnerships with NASA.

NASA and Axiom Space have again signed a mission order for a private astronaut mission to the International Space Station. The mission will commence sometime in November or on and will be from the agency’s NASA’s Kennedy Space Center in Florida. Axiom Mission 3 is the third mission of its kind and, according to a statement from NASA, is expected to be a 14-day trip.

The ISS's Multilateral Crew Operations Panel will approve four proposed crew members and two back up crew submitted by Axiom for the Ax-3 mission. The crew will be expected to train for their flight with NASA, international partners, and SpaceX beginning this spring, according to NASA.

“Axiom Space’s selection to lead the next private astronaut mission to the International Space Station enables us to continue expanding access to nations, academia, commercial entities, and emerging industries to research, test, and demonstrate new technologies in microgravity,” says Michael Suffredini, CEO and president of Axiom Space, in the release. “As NASA’s focus shifts back to the Moon and on to Mars, we are committed to transforming low-Earth orbit into a global space marketplace, where access to space moves beyond the partners of the space station to nations, institutions and individuals with new ideas fueling a thriving human economy beyond Earth.”

Axiom's historic first commercial launch was in spring of 2022, and Ax-2, which will launch the first Saudi astronauts to visit the ISS, is expected to launch this spring. In addition to these two missions, Axiom has been tasked by NASA to develop spacesuits and space station technology.

After several months of working on the suits, Axiom has revealed the details of the technology that will be worn by NASA astronauts returning to the moon on the Artemis III mission that's scheduled to land near the lunar south pole in 2025.

The newly revealed spacesuit will be worn by the first woman and first person of color to visit the moon. Photo courtesy of Axiom Space

“We’re carrying on NASA’s legacy by designing an advanced spacesuit that will allow astronauts to operate safely and effectively on the Moon,” says Suffredini in a statement from the company. “Axiom Space’s Artemis III spacesuit will be ready to meet the complex challenges of the lunar south pole and help grow our understanding of the Moon in order to enable a long-term presence there.”

Called the Axiom Extravehicular Mobility Unit, or AxEMU, the prototype was revealed at Space Center Houston’s Moon 2 Mars Festival today, March 15. According to Axiom, a full fleet of training spacesuits will be delivered to NASA by late this summer.

At the same time as the Ax-3 mission announcement, NASA also announced that it has selected Firefly Aerospace of Cedar Park, Texas, to carry multiple payloads to the far side of the Moon. According to NASA, the commercial lander will deliver two agency payloads, as well as communication and data relay satellite for lunar orbit, which is an European Space Agency collaboration with NASA.

The contract — awarded for around $112 million — is targeted to launch in 2026 through NASA’s Commercial Lunar Payload Services, or CLPS, initiative, and part of the agency’s Artemis program. It's the second award to Firefly under the CLPS initiative.

“The diversity of currently available commercial orbital human spaceflight opportunities is truly astounding. NASA’s commercial crew flights to the space station for our government astronauts paved the way for fully private missions to space like Inspiration4 and Polaris as well as private astronaut missions to the orbiting laboratory like the one we are announcing today,” says Phil McAlister, director of commercial space at NASA Headquarters in Washington, in the release. “We are starting to see the incorporation of space into our economic sphere, and it is going to revolutionize the way people see, use, and experience space.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Luxury transportation startup connects Houston with Austin and San Antonio

On The Road Again

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare.

Bookings are now available Monday through Saturday with departure times in the morning and evening. One-way fares range from $47-$87, putting Shutto in a similar lane to Dallas-based Vonlane, which also offers routes from Houston to Austin and San Antonio.

Shutto enters the market at a time when highway congestion is a hotter topic than ever. With high-speed rail still years in the future, its model aims to provide fast, predictable service at commuter prices.

The startup touts an on-time departure guarantee and a relaxed, intimate ride. Only 12 passengers fit inside each Mercedes Sprinter van, equipped with Wi-Fi and leather seating. And each route includes a pit stop at roadside favorite Buc-ee's.

In announcing the launch, founder and CEO Alberto Salcedo called the company a new category in Texas mobility.

“We are bringing true disruptive mobility to Texas: faster and more convenient than flying (no security lines, no delays), more comfortable and exclusive than the bus or train, and up to 70 percent cheaper than private transfers or Uber Black,” Salcedo said in a release.

“Whether you’re commuting for business, visiting family, exploring Texas wineries, or doing a taco tour in San Antonio, Shutto makes traveling between these cities as easy and affordable as riding inside the city."

Beyond the scheduled routes, Shutto offers private, customizable trips anywhere in the country, a service it expects will appeal to corporate retreat planners, party planners, and tourists alike.

In Houston, the service picks up and drops off near the Galleria at the Foam Coffee & Kitchen parking lot, 5819 Richmond Ave.. In San Antonio, it is located at La Panadería Bakery’s parking lot at 8305 Broadway. In Austin, the location is the Pershing East Café parking lot at 2501 E. Fifth St.

---

This article originally appeared on CultureMap.com.

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”