Vicky Yao and Qiliang Lai. Photo courtesy of Rice University

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.

Rice University's new Bachelor of Science in AI will be one of only a few in the country. Photo via Getty Images.

Houston university to launch artificial intelligence major, one of first in nation

BS in AI

Rice University announced this month that it plans to introduce a Bachelor of Science in AI in the fall 2025 semester.

The new degree program will be part of the university's department of computer science in the George R. Brown School of Engineering and Computing and is one of only a few like it in the country. It aims to focus on "responsible and interdisciplinary approaches to AI," according to a news release from the university.

“We are in a moment of rapid transformation driven by AI, and Rice is committed to preparing students not just to participate in that future but to shape it responsibly,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, said in the release. “This new major builds on our strengths in computing and education and is a vital part of our broader vision to lead in ethical AI and deliver real-world solutions across health, sustainability and resilient communities.”

John Greiner, an assistant teaching professor of computer science in Rice's online Master of Computer Science program, will serve as the new program's director. Vicente Ordóñez-Román, an associate professor of computer science, was also instrumental in developing and approving the new major.

Until now, Rice students could study AI through elective courses and an advanced degree. The new bachelor's degree program opens up deeper learning opportunities to undergrads by blending traditional engineering and math requirements with other courses on ethics and philosophy as they relate to AI.

“With the major, we’re really setting out a curriculum that makes sense as a whole,” Greiner said in the release. “We are not simply taking a collection of courses that have been created already and putting a new wrapper around them. We’re actually creating a brand new curriculum. Most of the required courses are brand new courses designed for this major.”

Students in the program will also benefit from resources through Rice’s growing AI ecosystem, like the Ken Kennedy Institute, which focuses on AI solutions and ethical AI. The university also opened its new AI-focused "innovation factory," Rice Nexus, earlier this year.

“We have been building expertise in artificial intelligence,” Ordóñez-Román added in the release. “There are people working here on natural language processing, information retrieval systems for machine learning, more theoretical machine learning, quantum machine learning. We have a lot of expertise in these areas, and I think we’re trying to leverage that strength we’re building.”

The new Rice Nexus is partnering with Google Public Sector and Non Sibi Ventures to support high-potential AI-focused startups. Image via Rice University.

Google teams up with Rice University to launch AI-focused accelerator

eyes on AI

Google Public Sector is teaming up with Rice University to drive early-stage artificial intelligence innovation and commercialization via the new Rice AI Venture Accelerator, or RAVA.

RAVA will use Google Cloud technology and work with venture capital firm Non Sibi Ventures to connect high-potential AI-focused startups with public and private sector organizations. The incubator will be led by Rice Nexus, which launched earlier this year in the Ion District as an AI-focused "innovation factory.”

“Google Public Sector is proud to partner with a leading institution like Rice University to launch the Rice AI Venture Accelerator,” Reymund Dumlao, director of state and local government and education at Google Public Sector, said in a news release. “By providing access to Google Cloud’s cutting-edge AI, secure cloud infrastructure and expertise, we’re enabling the next generation of AI pioneers to develop solutions that address critical challenges across industries and within the public sector. This unique partnership between education and industry will give participants access to cutting-edge research, leading technologists, specialized resources and a collaborative academic ecosystem, fostering an environment for rapid innovation and growth.”

Participants will have access to Google Public Sector’s AI leadership as well as experts from Rice’s Ken Kennedy Institute, which focuses on AI and computing research. It will be led by Sanjoy Paul, Rice Nexus’ inaugural executive director. Paul previously worked at Accenture LLC as a managing director of technology and is a lecturer in Rice's Department of Computer Science.

Rice Nexus will serve as the physical hub for RAVA, but the program will support AI startups from across the U.S., as part of Rice’s Momentous strategic plan, according to the university.

“This hub enables AI startups to go beyond building minimum viable products that meet industry privacy standards by utilizing the latest AI technologies from Google Cloud,” Paul said in the news release. “Our goal is to maximize the return on investment for our corporate partners, driving meaningful innovation that will have lasting impact on their industries.”

The 10,000-square-foot Rice Nexus space currently serves as home base for several startups with ties to Rice, including Solidec, BeOne Sports and others. Read more about the new incubation space here.

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo by Eric Turnquist

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

------

This article originally ran on EnergyCapital.

Angela Wilkins joins the Houston Innovators Podcast to discuss the intersection of data and health care. Photo courtesy

Houston data scientist joins medical device startup amid AI evolution in the sector

HOUSTON INNOVATORS PODCAST EPISODE 241

When most people hear about Houston startup Starling Medical, they might think about how much potential the medical device company has in the field of urinalysis diagnostics. But that's not quite where Angela Wilkins's head went.

Wilkins explains on the Houston Innovators Podcast that when she met the company's co-founders, Hannah McKenney and Drew Hendricks, she recognized them as very promising startup leaders taking action on a real health care problem. Starling's device can collect urine and run diagnostics right from a patient's toilet.

"It was one of those things where I just thought, 'They're going to get a bunch of data soon,'" Wilkins says. "The opportunity is just there, and I was really excited to come on and build their AI platform and the way they are going to look at data."

For about a year, Wilkins supported the startup as an adviser. Now, she's working more hands on as chief data officer as the company grows.



Wilkins, who serves as a mentor and adviser for several startups, has a 20-year career in Houston across all sides of the innovation equation, working first at Baylor College of Medicine before co-founding Mercury Data Science — now OmniScience. Most recently she served as executive director of the Ken Kennedy Institute at Rice University.

This variety in her resume makes her super connective — a benefit to all the startups she works with, she explains. The decision to transition to a startup team means she gets to work hands on in building a technology — while bringing in her experience from other institutions.

"I think I've really learned how to partner with those institutions," she says on the show. "I've really learned how to make those bridges, and that's a big challenge that startups face."

"When we talk about the Houston innovation ecosystem, it's something we should be doing better at because we have so many startups and so many places that would like to use better technology to solve problems," she continues.

Wilkins has data and artificial intelligence on the mind in everything she does, and she even serves on a committee at the state level to learn and provide feedback on how Texas should be regulating AI.

"At the end of the day, the mission is to put together a report and strategy on how we think Texas should think about AI," she explains. "It's beyond just using an algorithm, they need infrastructure."

Colorado is the first state to pass legislation surrounding AI, and Wilkins says all eyes are on how execution of that new law will go.

"We should have technology that can be double checked to make sure we're applying it in a way that's fair across all demographics. It's obvious that we should do that — it's just very hard," she says.

"Better and personalized healthcare through AI is still a hugely challenging problem that will take an army of scientists and engineers." Photo via UH.edu

Houston expert explains health care's inequity problem

guest column

We are currently in the midst of what some have called the "wild west" of AI. Though healthcare is one of the most heavily regulated sectors, the regulation of AI in this space is still in its infancy. The rules are being written as we speak. We are playing catch-up by learning how to reap the benefits these technologies offer while minimizing any potential harms once they've already been deployed.

AI systems in healthcare exacerbate existing inequities. We've seen this play out into real-world consequences from racial bias in the American justice system and credit scoring, to gender bias in resume screening applications. Programs that are designed to bring machine "objectivity" and ease to our systems end up reproducing and upholding biases with no means of accountability.

The algorithm itself is seldom the problem. It is often the data used to program the technology that merits concern. But this is about far more than ethics and fairness. Building AI tools that take account of the whole picture of healthcare is fundamental to creating solutions that work.

The Algorithm is Only as Good as the Data

By nature of our own human systems, datasets are almost always partial and rarely ever fair. As Linda Nordling comments in a Nature article, A fairer way forward for AI in healthcare, "this revolution hinges on the data that are available for these tools to learn from, and those data mirror the unequal health system we see today."

Take, for example, the finding that Black people in US emergency rooms are 40 percent less likely to receive pain medication than are white people, and Hispanic patients are 25 percent less likely. Now, imagine the dataset these findings are based on is used to train an algorithm for an AI tool that would be used to help nurses determine if they should administer pain relief medication. These racial disparities would be reproduced and the implicit biases that uphold them would remain unquestioned, and worse, become automated.

We can attempt to improve these biases by removing the data we believe causes the bias in training, but there will still be hidden patterns that correlate with demographic data. An algorithm cannot take in the nuances of the full picture, it can only learn from patterns in the data it is presented with.

Bias Creep

Data bias creeps into healthcare in unexpected ways. Consider the fact that animal models used in laboratories across the world to discover and test new pain medications are almost entirely male. As a result, many medications, including pain medication, are not optimized for females. So, it makes sense that even common pain medications like ibuprofen and naproxen have been proven to be more effective in men than women and that women tend to experience worse side effects from pain medication than men do.

In reality, male rodents aren't perfect test subjects either. Studies have also shown that both female and male rodents' responses to pain levels differ depending on the sex of the human researcher present. The stress response elicited in rodents to the olfactory presence of a sole male researcher is enough to alter their responses to pain.

While this example may seem to be a departure from AI, it is in fact deeply connected — the current treatment choices we have access to were implicitly biased before the treatments ever made it to clinical trials. The challenge of AI equity is not a purely technical problem, but a very human one that begins with the choices that we make as scientists.

Unequal Data Leads to Unequal Benefits

In order for all of society to enjoy the many benefits that AI systems can bring to healthcare, all of society must be equally represented in the data used to train these systems. While this may sound straightforward, it's a tall order to fill.

Data from some populations don't always make it into training datasets. This can happen for a number of reasons. Some data may not be as accessible or it may not even be collected at all due to existing systemic challenges, such as a lack of access to digital technology or simply being deemed unimportant. Predictive models are created by categorizing data in a meaningful way. But because there's generally less of it, "minority" data tends to be an outlier in datasets and is often wiped out as spurious in order to create a cleaner model.

Data source matters because this detail unquestionably affects the outcome and interpretation of healthcare models. In sub-Saharan Africa, young women are diagnosed with breast cancer at a significantly higher rate. This reveals the need for AI tools and healthcare models tailored to this demographic group, as opposed to AI tools used to detect breast cancer that are only trained on mammograms from the Global North. Likewise, a growing body of work suggests that algorithms used to detect skin cancer tend to be less accurate for Black patients because they are trained mostly on images of light-skinned patients. The list goes on.

We are creating tools and systems that have the potential to revolutionize the healthcare sector, but the benefits of these developments will only reach those represented in the data.

So, what can be done?

Part of the challenge in getting bias out of data is that high volume, diverse and representative datasets are not easy to access. Training datasets that are publicly available tend to be extremely narrow, low-volume, and homogenous—they only capture a partial picture of society. At the same time, a wealth of diverse health data is captured every day in many healthcare settings, but data privacy laws make accessing these more voluminous and diverse datasets difficult.

Data protection is of course vital. Big Tech and governments do not have the best track record when it comes to the responsible use of data. However, if transparency, education, and consent for the sharing of medical data was more purposefully regulated, far more diverse and high-volume data sets could contribute to fairer representation across AI systems and result in better, more accurate results for AI-driven healthcare tools.

But data sharing and access is not a complete fix to healthcare's AI problem. Better and personalized healthcare through AI is still a hugely challenging problem that will take an army of scientists and engineers. At the end of the day, we want to teach our algorithms to make good choices but we are still figuring out what good choices should look like for ourselves.

AI presents the opportunity to bring greater personalization to healthcare, but it equally presents the risk of entrenching existing inequalities. We have the opportunity in front of us to take a considered approach to data collection, regulation, and use that will provide a fuller and fairer picture and enable the next steps for AI in healthcare.

------

Angela Wilkins is the executive director of the Ken Kennedy Institute at Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 incubators and accelerators fueling the growth of Houston startups

meet the finalists

Houston is home to numerous accelerators and incubators that support founders in pushing their innovative startups and technologies forward.

As part of our 2025 Houston Innovation Awards, the new Incubator/Accelerator of the Year category honors a local incubator or accelerator that is championing and fueling the growth of Houston startups.

Five incubators and accelerators have been named finalists for the 2025 award. They support startups ranging from hard-tech companies to digital health startups.

Read more about these organizations below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Get your tickets now on sale for this exclusive event celebrating Houston Innovation.

Activate

Hard tech incubator Activate supports scientists in "the outset of their entrepreneurial journey." The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. It named its second Houston cohort this summer.

This year, the incubator grew to include its largest number of concurrent supported fellows, with 88 companies currently being supported nationally. In total, Activate has supported 296 fellows who have created 236 companies. Those companies have raised over $4 billion in follow-on funding, according to Activate. In Houston, it has supported several Innovation Awards finalists, including Solidec, Bairitone Health and Deep Anchor Solutions. It is led locally by Houston Managing Director Jeremy Pitts.

EnergyTech Nexus

Cleantech startup hub EnergyTech Nexus' mission is to accelerate the energy transition by connecting founders, investors and industrial stakeholders and helping to develop transformative companies, known as "thunderlizards."

The hub was founded in 2023 by CEO Jason Ethier, Juliana Garaizar and Nada Ahmed. It has supported startups including Capwell Services, Resollant, Syzygy Plasmonics, Hertha Metals, EarthEn Energy and Solidec—many of which are current or past Innovation Awards finalists. This year Energy Tech Nexus launched its COPILOT Accelerator, powered by Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory (NREL). COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. Energy Tech Nexus also launched its Liftoff fundraising program, its Investor Program, and a "strategic ecosystem partnership" with Greentown Labs.

Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Greentown has seen major changes and activity this year. In February, Greentown announced Georgina Campbell Flatter as its new CEO, along with a new Board of Directors. In July, it announced Lawson Gow as its Head of Houston, a "dedicated role to champion the success of Greentown Houston’s startups and lead Greentown’s next chapter of impact in the region," according to Greentown. It has since announced numerous new partnerships, including those with Energy Tech Nexus, Los Angeles-based software development firm Nominal, to launch the new Industrial Center of Excellence; and Houston-based Shoreless, to launch an AI lab onsite. Greentown Houston has supported 175 startups since its launch in 2021, with 45 joining in the last two years. Those startups include the likes of Hertha Metals, RepAir Carbon, Solidec, Eclipse Energy (formerly GoldH2) and many others.

Healthtech Accelerator (TMCi)

The Healthtech Accelerator, formerly TMCx, focuses on clinical partnerships to improve healthcare delivery and outcomes. Emerging digital health and medical device startups that join the accelerator are connected with a network of TMC hospitals and seasoned advisors that will prepare them for clinical validation, funding and deployment.

The Healthtech Accelerator is part of Texas Medical Center Innovation, which also offers the TMCi Accelerator for Cancer Therapeutics. The Healthtech Accelerator named its 19th, and latest, cohort of 11 companies last month.

Impact Hub Houston

Impact Hub Houston supports early-stage ventures at various stages of development through innovative programs that address pressing societal issues. The nonprofit organization supports social impact startups through mentorship, connections and training opportunities.

There are more than 110 Impact Hubs globally with 24,000-plus members spanning 69 countries, making it one of the world’s largest communities for accelerating entrepreneurial solutions toward the United Nations' Sustainable Development Goals (SDGs).

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.



Rice University launches  engineering-led brain science and health institute

brain research

Rice University has announced the creation of a new interdisciplinary center known as the Rice Brain Institute (RBI).

The new hub will aim to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders.

“The Rice Brain Institute reflects Rice’s strength in collaboration without boundaries,” Rachel Kimbro, dean of the School of Social Sciences, said in a news release. “Our researchers are not only advancing fundamental science but they’re also ensuring that knowledge reaches society in ways that promote human flourishing.”

RBI researchers will work in thematic clusters focusing on neurodegeneration, mental health, brain injury and neurodevelopment. The clusters will work toward goals such as significantly improving key brain health outcomes, reducing mortality and mental health disorders and improving quality of life for patients living with brain injuries and neurodevelopmental disorders, according to Rice.

The institute will focus on “engineering-driven innovation,” rather than traditional neuroscience, to design tools that can measure, model and modulate brain activity based around Rice’s expertise in soft robotics, neuroimaging, data science and artificial intelligence—making it unique among peer organizations, according to Rice.

Additionally, RBI will be structured around three collaborative Rice “pillars”:

  • The Neuroengineering Initiative, launched in 2018, brings together neuroscience, engineering, and related fields experts
  • The Neuroscience Initiative, a new initiative that brings together cell biologists, neurobiologists, biochemists, chemists and physicists to explore fundamental mechanisms of the brain and nervous system
  • The Brain and Society Initiative, also a new initiative, considers brain research within the broader social and policy landscape

Rice’s Neuroengineering Initiative has already garnered more than $78 million in research funding, according to Rice, and has established major partnerships, like the Rice-Houston Methodist Center for Neural Systems Restoration.

“Rice is uniquely equipped to bridge and connect scientific understanding of the brain and behavior sciences with the technologies and policies that shape our world,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, added in the news release. “By uniting faculty in neuroengineering, neuroscience and psychological sciences, this interdisciplinary hub embodies the kind of bold, nimble collaboration that allows Rice to turn discovery into societal impact to save lives and enhance human flourishing.”

The formation of the RBI coincides with recent support of the Dementia Prevention Research Institute of Texas (DPRIT), which landed voter approval earlier this week and aims to make Texas the center for dementia research via brain-health tech. According to the World Economic Forum, brain disorders and mental health disorders cost the global economy an estimated $5 trillion per year and could be as high as $16 trillion by 2030.

“Few areas of research have as direct and profound an impact on human well-being as brain health,” Rice President Reginald DesRoches added in the news release. “As rates of Alzheimer’s, dementia and other neurological diseases rise in our country and around the world, universities have a responsibility to lead the discovery of solutions that preserve memory, movement and quality of life. We all know someone who has been affected by a brain-related health issue, so this research is personal to all of us.”

Texas voters OK $3 billion for new dementia research institute

state funding

Texas voters on Nov. 4 overwhelmingly approved a ballot measure that provides $3 billion in state funding over a 10-year span for the newly established Dementia Prevention and Research Institute of Texas (DPRIT).

Thanks to the passage of Proposition 14, Texas now boasts the country’s largest state-funded initiative dedicated to dementia research and prevention, according to the Alzheimer’s Association. Up to $300 million in grants will be awarded during the 10-year funding period.

“This is a transformative moment for Texas and for the fight against Alzheimer’s and all other dementia,” said Joanne Pike, president and CEO of the Alzheimer’s Association. “Texans have chosen to invest in hope, innovation, and solutions for the millions of families affected by these devastating diseases. With the passage of Proposition 14, Texas is now poised to lead the nation in dementia research and prevention.”

The association says DPRIT will drive scientific breakthroughs, attract top-notch dementia researchers to Texas, and generate thousands of jobs statewide.

An estimated 460,000 Texans are living with dementia, the association says, and more than one million caregivers support them.

DPRIT is modeled after the Cancer Prevention and Research Institute of Texas (CPRIT). Since 2008, the state agency has awarded nearly $4 billion in grants to research organizations for cancer-related academic research, prevention programs, and product development.

An analysis by the McKinsey Health Institute found that investing in brain health initiatives like DPRIT could boost Texas’ GDP by $260 billion. Much of that GDP bump could benefit the Houston area, which is home to dementia-focused organizations such as UTHealth Houston Neurosciences, Baylor College of Medicine’s Center for Alzheimer’s and Neurodegenerative Diseases, the University of Texas Medical Branch at Galveston’s Collaborative Alzheimer’s Disease and Memory Disorders Program, and the Houston Methodist Research Institute’s John M. O’Quinn Foundation Neurodegenerative Disorders Laboratory.

The Greater Houston Partnership says DPRIT holds the potential “to elevate Texas — particularly Houston — as a hub for brain health research.”

State Sen. Joan Huffman, a Houston Republican, is one of DPRIT’s champions. She sponsored legislation this year to create the institute and ask Texas voters to approve the $3 billion in funding.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said in May. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our health care community.”