The new Rice Nexus is partnering with Google Public Sector and Non Sibi Ventures to support high-potential AI-focused startups. Image via Rice University.

Google Public Sector is teaming up with Rice University to drive early-stage artificial intelligence innovation and commercialization via the new Rice AI Venture Accelerator, or RAVA.

RAVA will use Google Cloud technology and work with venture capital firm Non Sibi Ventures to connect high-potential AI-focused startups with public and private sector organizations. The incubator will be led by Rice Nexus, which launched earlier this year in the Ion District as an AI-focused "innovation factory.”

“Google Public Sector is proud to partner with a leading institution like Rice University to launch the Rice AI Venture Accelerator,” Reymund Dumlao, director of state and local government and education at Google Public Sector, said in a news release. “By providing access to Google Cloud’s cutting-edge AI, secure cloud infrastructure and expertise, we’re enabling the next generation of AI pioneers to develop solutions that address critical challenges across industries and within the public sector. This unique partnership between education and industry will give participants access to cutting-edge research, leading technologists, specialized resources and a collaborative academic ecosystem, fostering an environment for rapid innovation and growth.”

Participants will have access to Google Public Sector’s AI leadership as well as experts from Rice’s Ken Kennedy Institute, which focuses on AI and computing research. It will be led by Sanjoy Paul, Rice Nexus’ inaugural executive director. Paul previously worked at Accenture LLC as a managing director of technology and is a lecturer in Rice's Department of Computer Science.

Rice Nexus will serve as the physical hub for RAVA, but the program will support AI startups from across the U.S., as part of Rice’s Momentous strategic plan, according to the university.

“This hub enables AI startups to go beyond building minimum viable products that meet industry privacy standards by utilizing the latest AI technologies from Google Cloud,” Paul said in the news release. “Our goal is to maximize the return on investment for our corporate partners, driving meaningful innovation that will have lasting impact on their industries.”

The 10,000-square-foot Rice Nexus space currently serves as home base for several startups with ties to Rice, including Solidec, BeOne Sports and others. Read more about the new incubation space here.

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo by Eric Turnquist

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

------

This article originally ran on EnergyCapital.

Angela Wilkins joins the Houston Innovators Podcast to discuss the intersection of data and health care. Photo courtesy

Houston data scientist joins medical device startup amid AI evolution in the sector

HOUSTON INNOVATORS PODCAST EPISODE 241

When most people hear about Houston startup Starling Medical, they might think about how much potential the medical device company has in the field of urinalysis diagnostics. But that's not quite where Angela Wilkins's head went.

Wilkins explains on the Houston Innovators Podcast that when she met the company's co-founders, Hannah McKenney and Drew Hendricks, she recognized them as very promising startup leaders taking action on a real health care problem. Starling's device can collect urine and run diagnostics right from a patient's toilet.

"It was one of those things where I just thought, 'They're going to get a bunch of data soon,'" Wilkins says. "The opportunity is just there, and I was really excited to come on and build their AI platform and the way they are going to look at data."

For about a year, Wilkins supported the startup as an adviser. Now, she's working more hands on as chief data officer as the company grows.



Wilkins, who serves as a mentor and adviser for several startups, has a 20-year career in Houston across all sides of the innovation equation, working first at Baylor College of Medicine before co-founding Mercury Data Science — now OmniScience. Most recently she served as executive director of the Ken Kennedy Institute at Rice University.

This variety in her resume makes her super connective — a benefit to all the startups she works with, she explains. The decision to transition to a startup team means she gets to work hands on in building a technology — while bringing in her experience from other institutions.

"I think I've really learned how to partner with those institutions," she says on the show. "I've really learned how to make those bridges, and that's a big challenge that startups face."

"When we talk about the Houston innovation ecosystem, it's something we should be doing better at because we have so many startups and so many places that would like to use better technology to solve problems," she continues.

Wilkins has data and artificial intelligence on the mind in everything she does, and she even serves on a committee at the state level to learn and provide feedback on how Texas should be regulating AI.

"At the end of the day, the mission is to put together a report and strategy on how we think Texas should think about AI," she explains. "It's beyond just using an algorithm, they need infrastructure."

Colorado is the first state to pass legislation surrounding AI, and Wilkins says all eyes are on how execution of that new law will go.

"We should have technology that can be double checked to make sure we're applying it in a way that's fair across all demographics. It's obvious that we should do that — it's just very hard," she says.

"Better and personalized healthcare through AI is still a hugely challenging problem that will take an army of scientists and engineers." Photo via UH.edu

Houston expert explains health care's inequity problem

guest column

We are currently in the midst of what some have called the "wild west" of AI. Though healthcare is one of the most heavily regulated sectors, the regulation of AI in this space is still in its infancy. The rules are being written as we speak. We are playing catch-up by learning how to reap the benefits these technologies offer while minimizing any potential harms once they've already been deployed.

AI systems in healthcare exacerbate existing inequities. We've seen this play out into real-world consequences from racial bias in the American justice system and credit scoring, to gender bias in resume screening applications. Programs that are designed to bring machine "objectivity" and ease to our systems end up reproducing and upholding biases with no means of accountability.

The algorithm itself is seldom the problem. It is often the data used to program the technology that merits concern. But this is about far more than ethics and fairness. Building AI tools that take account of the whole picture of healthcare is fundamental to creating solutions that work.

The Algorithm is Only as Good as the Data

By nature of our own human systems, datasets are almost always partial and rarely ever fair. As Linda Nordling comments in a Nature article, A fairer way forward for AI in healthcare, "this revolution hinges on the data that are available for these tools to learn from, and those data mirror the unequal health system we see today."

Take, for example, the finding that Black people in US emergency rooms are 40 percent less likely to receive pain medication than are white people, and Hispanic patients are 25 percent less likely. Now, imagine the dataset these findings are based on is used to train an algorithm for an AI tool that would be used to help nurses determine if they should administer pain relief medication. These racial disparities would be reproduced and the implicit biases that uphold them would remain unquestioned, and worse, become automated.

We can attempt to improve these biases by removing the data we believe causes the bias in training, but there will still be hidden patterns that correlate with demographic data. An algorithm cannot take in the nuances of the full picture, it can only learn from patterns in the data it is presented with.

Bias Creep

Data bias creeps into healthcare in unexpected ways. Consider the fact that animal models used in laboratories across the world to discover and test new pain medications are almost entirely male. As a result, many medications, including pain medication, are not optimized for females. So, it makes sense that even common pain medications like ibuprofen and naproxen have been proven to be more effective in men than women and that women tend to experience worse side effects from pain medication than men do.

In reality, male rodents aren't perfect test subjects either. Studies have also shown that both female and male rodents' responses to pain levels differ depending on the sex of the human researcher present. The stress response elicited in rodents to the olfactory presence of a sole male researcher is enough to alter their responses to pain.

While this example may seem to be a departure from AI, it is in fact deeply connected — the current treatment choices we have access to were implicitly biased before the treatments ever made it to clinical trials. The challenge of AI equity is not a purely technical problem, but a very human one that begins with the choices that we make as scientists.

Unequal Data Leads to Unequal Benefits

In order for all of society to enjoy the many benefits that AI systems can bring to healthcare, all of society must be equally represented in the data used to train these systems. While this may sound straightforward, it's a tall order to fill.

Data from some populations don't always make it into training datasets. This can happen for a number of reasons. Some data may not be as accessible or it may not even be collected at all due to existing systemic challenges, such as a lack of access to digital technology or simply being deemed unimportant. Predictive models are created by categorizing data in a meaningful way. But because there's generally less of it, "minority" data tends to be an outlier in datasets and is often wiped out as spurious in order to create a cleaner model.

Data source matters because this detail unquestionably affects the outcome and interpretation of healthcare models. In sub-Saharan Africa, young women are diagnosed with breast cancer at a significantly higher rate. This reveals the need for AI tools and healthcare models tailored to this demographic group, as opposed to AI tools used to detect breast cancer that are only trained on mammograms from the Global North. Likewise, a growing body of work suggests that algorithms used to detect skin cancer tend to be less accurate for Black patients because they are trained mostly on images of light-skinned patients. The list goes on.

We are creating tools and systems that have the potential to revolutionize the healthcare sector, but the benefits of these developments will only reach those represented in the data.

So, what can be done?

Part of the challenge in getting bias out of data is that high volume, diverse and representative datasets are not easy to access. Training datasets that are publicly available tend to be extremely narrow, low-volume, and homogenous—they only capture a partial picture of society. At the same time, a wealth of diverse health data is captured every day in many healthcare settings, but data privacy laws make accessing these more voluminous and diverse datasets difficult.

Data protection is of course vital. Big Tech and governments do not have the best track record when it comes to the responsible use of data. However, if transparency, education, and consent for the sharing of medical data was more purposefully regulated, far more diverse and high-volume data sets could contribute to fairer representation across AI systems and result in better, more accurate results for AI-driven healthcare tools.

But data sharing and access is not a complete fix to healthcare's AI problem. Better and personalized healthcare through AI is still a hugely challenging problem that will take an army of scientists and engineers. At the end of the day, we want to teach our algorithms to make good choices but we are still figuring out what good choices should look like for ourselves.

AI presents the opportunity to bring greater personalization to healthcare, but it equally presents the risk of entrenching existing inequalities. We have the opportunity in front of us to take a considered approach to data collection, regulation, and use that will provide a fuller and fairer picture and enable the next steps for AI in healthcare.

------

Angela Wilkins is the executive director of the Ken Kennedy Institute at Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-founded startup raises $1.2M and moves headquarters to Detroit

moving forward

Houston-founded ChurchSpace, known as the Airbnb for churches, has formed an official partnership with the City of Detroit and will relocate its headquarters.

The announcements come as the company successfully closed a $1.2 million oversubscribed funding round. The round was led by California-based Black Ops Ventures, with participation from Michigan Rise and Dug Song of Minor Capital, who is also the founder of the Song Foundation, another Michigan-based organization.

"This raise is more than a business milestone—it's a testament to what happens when strategy meets faith. In today's climate, raising capital takes grit and resilience—especially without deep networks or traditional access. By God's grace, doors have opened, and our mission is clearer than ever. Now, with capital in hand, we're building boldly toward a future where the Church isn't just surviving—but leading community transformation," Emmanuel Brown, co-founder and CEO of ChurchSpace, said in a statement.

In Detroit, ChurchSpace plans to activate underutilized church campuses as micro-logistics spaces for food distribution and retail partnerships, as well as last-mile delivery centers. To kick off its relocation, ChurchSpace will host a Detroit Pastor Meetup on July 19.

"We welcome ChurchSpace's investment in Detroit and the jobs and innovation it will bring," Detroit Mayor Mike Duggan added in the release. "Our faith community has long been a critical backbone of our neighborhoods. Through ChurchSpace's groundbreaking work, they will continue to be anchors of opportunity and resilience in our city's future."

ChurchSpace was originally founded to convert underutilized church real estate into event, meeting and commercial kitchen space to boost revenue and relieve financial burden while remaining compliant with IRS regulations for non-profits. The company participated in the inaugural cohort of the AWS Impact Accelerator for Black Founders, which included a pre-seed fundraising campaign and a $125,000 equity injection from Amazon in 2022. It was also one of two Houston companies to receive $100,000 as part of the Google for Startups Black Founders Fund that same year.

The company reports that its platform in Texas has generated up to $100,000 annually in new revenue that was reinvested into church ministries, food programs and community initiatives.

"What we built in Houston was more than technology—it was transformation. We expanded our purpose and packaged proven strategies to help churches thrive, transform communities, and even combat food insecurity," Day Edwards, co-founder and president of ChurchSpace, added in the statement. "Now, with prayer and the support of our team and investors, we're bringing that same impact to Detroit—to help churches, communities, and small businesses redefine pulpits and rediscover communal possibilities."

Houston space tech co. lands millions and more innovation news to know

Trending News

Editor's note: It's time to recap the top innovation news for the first half of May 2025. Our five most-read stories from May 1-15 include updates from Intuitive Machines and The Ion. Plus, driverless trucks hit the road from Houston to Dallas. Get all of the details below.

1. Houston space tech leader lands up to $10 million for Earth re-entry vehicle and lab

The Texas Space Commission has selected Houston's Intuitive Machines to develop a vehicle that will return lunar samples to Earth, along with an orbital fabrication lab. Photo courtesy Intuitive Machines.

Houston-based space technology, infrastructure, and services company Intuitive Machines has been awarded a state grant of up to $10 million to help develop an Earth re-entry vehicle and in-space biomanufacturing lab. The Texas Space Commission approved the grant, which is coming from the state’s Space Exploration and Research Fund. Intuitive Machines says the money will support its “critical risk-reduction platform” for returning lunar samples to Earth. The funding will go toward an early 12-month phase of the project. Continue reading.

2. 9 can't-miss Houston business and innovation events for May

Don't miss these May events — from an investor activation series to a crawfish cook-off. Photo courtesy Greentown Labs.

There's a lot to learn this month at events around Houston. Hear from AI and energy experts or gain insights into how to tap into funding at informative panels or sessions. Continue reading.

3. Autonomous truck company rolls out driverless Houston-Dallas route

Aurora began regular driverless deliveries between Houston and Dallas on April 27. Photo courtesy Aurora.

Houston is helping drive the evolution of self-driving freight trucks. In October, Aurora opened a more than 90,000-square-foot terminal at a Fallbrook Drive logistics hub in northwest Houston to support the launch of its first “lane” for driverless trucks—a Houston-to-Dallas route on the Interstate 45 corridor. Aurora opened its Dallas-area terminal in April and the company began regular driverless customer deliveries between the two Texas cities on April 27. Continue reading.

4. Texas-based 'DoorDash for laundry' startup tumbles into Houston market

The service has been a smash success in Austin. Courtesy photo

Laundry may seem like an endless task that piles up, but a new service offers a solution to overwhelmed Houston families. NoScrubs, an Austin-based home laundry pickup service has just expanded to Houston. Described by the company as "DoorDash — but for laundry," they wash customer's clothes at local laundromats and return them the same day, folded and ready to be put away. The service took off like gangbusters in Austin, making an expansion to the state's largest city an obvious choice. Continue reading.

5. New energy innovation and coworking spaces open at the Ion

The Oxy Innovation Center has opened at the Ion and Industrious' coworking space launches soon. Photo courtesy of The Ion

Houston-based Occidental officially opened its new Oxy Innovation Center with a ribbon cutting at the Ion. The opening reflects Oxy and the Ion's "shared commitment to advancing technology and accelerating a lower-carbon future," according to an announcement from the Ion. Oxy, which was named a corporate partner of the Ion in 2023, now has nearly 6,500 square feet on the fourth floor of the Ion. Rice University and the Rice Real Estate Company announced the lease of the additional space last year, along with agreements with Fathom Fund and Activate. Continue reading.

Houston healthtech leader launches clinical trial for innovative anxiety-treating device

making waves

Houston-based Nexalin Technology’s proprietary neurostimulation device will move forward with a new clinical trial evaluating its treatment of anxiety disorders and chronic insomnia in Brazil.

The first of Nexalin’s Gen-2 15-milliamp neurostimulation devices have been shipped to São Paulo, Brazil, and the study will be conducted at the Instituto de Psiquiatria university hospital (IPq-HCFMUSP). The shipments aim to support the launch of a Phase II clinical trial in adult patients suffering from anxiety and insomnia, according to a news release.

“Brazil is an important emerging market for mental health innovation, and this collaboration marks our first IRB-approved study in the region,” Mike White, CEO of Nexalin, said in the release.

The study will be led by Dr. Andre Russowsky Brunoni, who specializes in neuromodulation and interventional psychiatry. He currently serves as director of the interventional psychiatry division at IPq-HCFMUSP and this summer will join UT Southwestern in Dallas and its Peter O’Donnell Jr. Brain Institute as a professor of psychiatry.

The Phase II study plans to enroll 30 adults in São Paulo and assess the efficacy of Nexalin’s non-invasive deep intracranial frequency stimulation (DIFS™) of the brain in reducing anxiety symptoms and improving sleep quality, according to the company. Using the Hamilton Anxiety Rating Scale (HAM-A), the trial’s goal is a reduction in anxiety symptoms, and assessments of sleep onset latency, total sleep time, overall sleep quality, depressive symptoms and clinical impression of improvement. The company plans to share results in a peer-reviewed scientific journal.

“Anxiety and insomnia are very common conditions that often occur together and cause significant distress,” Brunoni added in the news release. “In this study, we are testing a new, non-invasive brain stimulation technology that has shown promising results in recent research. Our goal is to offer a safe, painless, and accessible alternative to improve people’s well being and sleep quality.”

The Nexalin Gen-2 15-milliamp neurostimulation device has been approved in China, Brazil, and Oman.

The company also enrolled the first patients in its clinical trial at the University of California, San Diego, in collaboration with the VA San Diego Healthcare System for its Nexalin HALO, which looks to treat mild traumatic brain injury and post-traumatic stress disorder in military personnel and the civilian population. It also recently raised $5 million through a public stock offering. Read more here.