New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.

Vicky Yao and Qiliang Lai. Photo courtesy of Rice University

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.

Rice University's new Bachelor of Science in AI will be one of only a few in the country. Photo via Getty Images.

Houston university to launch artificial intelligence major, one of first in nation

BS in AI

Rice University announced this month that it plans to introduce a Bachelor of Science in AI in the fall 2025 semester.

The new degree program will be part of the university's department of computer science in the George R. Brown School of Engineering and Computing and is one of only a few like it in the country. It aims to focus on "responsible and interdisciplinary approaches to AI," according to a news release from the university.

“We are in a moment of rapid transformation driven by AI, and Rice is committed to preparing students not just to participate in that future but to shape it responsibly,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, said in the release. “This new major builds on our strengths in computing and education and is a vital part of our broader vision to lead in ethical AI and deliver real-world solutions across health, sustainability and resilient communities.”

John Greiner, an assistant teaching professor of computer science in Rice's online Master of Computer Science program, will serve as the new program's director. Vicente Ordóñez-Román, an associate professor of computer science, was also instrumental in developing and approving the new major.

Until now, Rice students could study AI through elective courses and an advanced degree. The new bachelor's degree program opens up deeper learning opportunities to undergrads by blending traditional engineering and math requirements with other courses on ethics and philosophy as they relate to AI.

“With the major, we’re really setting out a curriculum that makes sense as a whole,” Greiner said in the release. “We are not simply taking a collection of courses that have been created already and putting a new wrapper around them. We’re actually creating a brand new curriculum. Most of the required courses are brand new courses designed for this major.”

Students in the program will also benefit from resources through Rice’s growing AI ecosystem, like the Ken Kennedy Institute, which focuses on AI solutions and ethical AI. The university also opened its new AI-focused "innovation factory," Rice Nexus, earlier this year.

“We have been building expertise in artificial intelligence,” Ordóñez-Román added in the release. “There are people working here on natural language processing, information retrieval systems for machine learning, more theoretical machine learning, quantum machine learning. We have a lot of expertise in these areas, and I think we’re trying to leverage that strength we’re building.”

The new Rice Nexus is partnering with Google Public Sector and Non Sibi Ventures to support high-potential AI-focused startups. Image via Rice University.

Google teams up with Rice University to launch AI-focused accelerator

eyes on AI

Google Public Sector is teaming up with Rice University to drive early-stage artificial intelligence innovation and commercialization via the new Rice AI Venture Accelerator, or RAVA.

RAVA will use Google Cloud technology and work with venture capital firm Non Sibi Ventures to connect high-potential AI-focused startups with public and private sector organizations. The incubator will be led by Rice Nexus, which launched earlier this year in the Ion District as an AI-focused "innovation factory.”

“Google Public Sector is proud to partner with a leading institution like Rice University to launch the Rice AI Venture Accelerator,” Reymund Dumlao, director of state and local government and education at Google Public Sector, said in a news release. “By providing access to Google Cloud’s cutting-edge AI, secure cloud infrastructure and expertise, we’re enabling the next generation of AI pioneers to develop solutions that address critical challenges across industries and within the public sector. This unique partnership between education and industry will give participants access to cutting-edge research, leading technologists, specialized resources and a collaborative academic ecosystem, fostering an environment for rapid innovation and growth.”

Participants will have access to Google Public Sector’s AI leadership as well as experts from Rice’s Ken Kennedy Institute, which focuses on AI and computing research. It will be led by Sanjoy Paul, Rice Nexus’ inaugural executive director. Paul previously worked at Accenture LLC as a managing director of technology and is a lecturer in Rice's Department of Computer Science.

Rice Nexus will serve as the physical hub for RAVA, but the program will support AI startups from across the U.S., as part of Rice’s Momentous strategic plan, according to the university.

“This hub enables AI startups to go beyond building minimum viable products that meet industry privacy standards by utilizing the latest AI technologies from Google Cloud,” Paul said in the news release. “Our goal is to maximize the return on investment for our corporate partners, driving meaningful innovation that will have lasting impact on their industries.”

The 10,000-square-foot Rice Nexus space currently serves as home base for several startups with ties to Rice, including Solidec, BeOne Sports and others. Read more about the new incubation space here.

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo by Eric Turnquist

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

------

This article originally ran on EnergyCapital.

Angela Wilkins joins the Houston Innovators Podcast to discuss the intersection of data and health care. Photo courtesy

Houston data scientist joins medical device startup amid AI evolution in the sector

HOUSTON INNOVATORS PODCAST EPISODE 241

When most people hear about Houston startup Starling Medical, they might think about how much potential the medical device company has in the field of urinalysis diagnostics. But that's not quite where Angela Wilkins's head went.

Wilkins explains on the Houston Innovators Podcast that when she met the company's co-founders, Hannah McKenney and Drew Hendricks, she recognized them as very promising startup leaders taking action on a real health care problem. Starling's device can collect urine and run diagnostics right from a patient's toilet.

"It was one of those things where I just thought, 'They're going to get a bunch of data soon,'" Wilkins says. "The opportunity is just there, and I was really excited to come on and build their AI platform and the way they are going to look at data."

For about a year, Wilkins supported the startup as an adviser. Now, she's working more hands on as chief data officer as the company grows.



Wilkins, who serves as a mentor and adviser for several startups, has a 20-year career in Houston across all sides of the innovation equation, working first at Baylor College of Medicine before co-founding Mercury Data Science — now OmniScience. Most recently she served as executive director of the Ken Kennedy Institute at Rice University.

This variety in her resume makes her super connective — a benefit to all the startups she works with, she explains. The decision to transition to a startup team means she gets to work hands on in building a technology — while bringing in her experience from other institutions.

"I think I've really learned how to partner with those institutions," she says on the show. "I've really learned how to make those bridges, and that's a big challenge that startups face."

"When we talk about the Houston innovation ecosystem, it's something we should be doing better at because we have so many startups and so many places that would like to use better technology to solve problems," she continues.

Wilkins has data and artificial intelligence on the mind in everything she does, and she even serves on a committee at the state level to learn and provide feedback on how Texas should be regulating AI.

"At the end of the day, the mission is to put together a report and strategy on how we think Texas should think about AI," she explains. "It's beyond just using an algorithm, they need infrastructure."

Colorado is the first state to pass legislation surrounding AI, and Wilkins says all eyes are on how execution of that new law will go.

"We should have technology that can be double checked to make sure we're applying it in a way that's fair across all demographics. It's obvious that we should do that — it's just very hard," she says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intuitive Machines forms partnership with Italian companies for lunar exploration services

to the moon

Houston-based space technology, infrastructure and services company Intuitive Machines has forged a partnership with two Italian companies to offer infrastructure, communication and navigation services for exploration of the moon.

Intuitive Machines’ agreement with the two companies, Leonardo and Telespazio, paves the way for collaboration on satellite services for NASA, a customer of Intuitive Machines, and the European Space Agency, a customer of Leonardo and Telespazio. Leonardo, an aerospace, defense and security company, is the majority owner of Telespazio, a provider of satellite technology and services.

“Resilient, secure, and scalable space infrastructure and space data networks are vital to customers who want to push farther on the lunar surface and beyond to Mars,” Steve Altemus, co-founder and CEO of Intuitive Machine, said in a news release.

Massimo Claudio Comparini, managing director of Leonardo’s space division, added that the partnership with Intuitive Machines is a big step toward enabling human and robotic missions from the U.S., Europe and other places “to access a robust communications network and high-precision navigation services while operating in the lunar environment.”

Intuitive Machines recently expanded its Houston Spaceport facilities to ramp up in-house production of satellites. The company’s first satellite will launch with its upcoming IM‑3 lunar mission.

Intuitive Machines says it ultimately wants to establish a “center of space excellence” at Houston Spaceport to support missions to the moon, Mars and the region between Earth and the moon.

Houston hospitals win $50M grant for ibogaine addiction treatment research

ibogaine funding

The Texas Health and Human Services Commission has awarded $50 million to UTHealth Houston in collaboration with The University of Texas Medical Branch at Galveston (UTMB Health) to co-lead a multicenter research trial to evaluate the effect of ibogaine, a powerful psychoactive compound, on patients suffering from addiction, traumatic brain injury and other behavioral health conditions.

The funding will establish a two-year initiative—known as Ibogaine Medicine for PTSD, Addiction, and Cognitive Trauma (IMPACT)—and a consortium of Texas health institutions focused on clinical trials and working toward potential FDA-approved treatments.

The consoritum will also include Texas Tech University, Texas Tech University Health Sciences Center El Paso, The University of Texas at Austin, The University of Texas Health Science Center at San Antonio, The University of Texas at Tyler, The University of Texas Rio Grande Valley, Texas A&M University, The University of North Texas Health Science Center, Baylor College of Medicine and JPS Health Network in Dallas.

Ibogaine is a plant-based, psychoactive substance derived from the iboga shrub. Research suggests that the substance could be used for potential treatment for patients with traumatic brain injuries, which is a leading cause of post-traumatic stress disorders. Ibogaine has also shown potential as a treatment for addiction and other neurological conditions.

UTHealth and partners will focus on ways that ibogaine can treat addiction and associated conditions. Meanwhile, UT Austin and Baylor College of Medicine will concentrate on using it to treat traumatic brain injury, especially in veterans, according to a news release from the institutions.

The consortium will also support drug developers and teaching hospitals to conduct FDA-approved clinical trials. The Texas Health and Human Services Commission will oversee the grant program.

“This landmark clinical trial reflects our unwavering commitment to advancing research that improves lives and delivers the highest standards of care,” Dr. Melina Kibbe, UTHealth Houston president and the Alkek-Williams Distinguished Chair, said in the news release. “By joining forces with outstanding partners across our state, we are building on Texas’ tradition of innovation to ensure patients struggling with addiction and behavioral health conditions have access to the best possible outcomes. Together, we are shaping discoveries that will serve Texans and set a model for the nation.”

The consortium was authorized by the passage of Senate Bill 2308. The bill provides $50 million in state-matching funds for an ibogaine clinical trial managed by a public university in partnership with a drug company and a hospital.

“This is the first major step towards the legislature’s goal of obtaining FDA approval through clinical trials of ibogaine — a potential breakthrough medication that has brought thousands of America’s war-fighters back from the darkest parts of depression, anxiety, PTSD, and chronic addiction,” Texas Rep. Cody Harris added in the release. “I am excited to walk alongside UTHealth Houston and UTMB as these stellar institutions lead the nation in a first-of-its-kind clinical trial in the U.S.”

Recently, the University of Houston also received a $2.6 million gift from the estate of Dr. William A. Gibson to support and expand its opioid addiction research, which includes the development of a fentanyl vaccine that could block the drug's ability to enter the brain. Read more here.

Tesla no longer world's biggest EV maker as sales fall for second year

Tesla Talk

Tesla lost its crown as the world’s bestselling electric vehicle maker as a customer revolt over Elon Musk’s right-wing politics, expiring U.S. tax breaks for buyers and stiff overseas competition pushed sales down for a second year in a row.

Tesla said that it delivered 1.64 million vehicles in 2025, down 9% from a year earlier.

Chinese rival BYD, which sold 2.26 million vehicles last year, is now the biggest EV maker.

It's a stunning reversal for a car company whose rise once seemed unstoppable as it overtook traditional automakers with far more resources and helped make Musk the world's richest man. The sales drop came despite President Donald Trump's marketing effort early last year when he called a press conference to praise Musk as a “patriot” in front of Teslas lined up on the White House driveway, then announced he would be buying one, bucking presidential precedent to not endorse private company products.

For the fourth quarter, Tesla sales totaled 418,227, falling short of even the much reduced 440,000 target that analysts recently polled by FactSet had expected. Sales were hit hard by the expiration of a $7,500 tax credit for electric vehicle purchases that was phased out by the Trump administration at the end of September.

Tesla stock fell 2.6% to $438.07 on Friday.

Even with multiple issues buffeting the company, investors are betting that Tesla CEO Musk can deliver on his ambitions to make Tesla a leader in robotaxi services and get consumers to embrace humanoid robots that can perform basic tasks in homes and offices. Reflecting that optimism, the stock finished 2025 with a gain of approximately 11%.

The latest quarter was the first with sales of stripped-down versions of the Model Y and Model 3 that Musk unveiled in early October as part of an effort to revive sales. The new Model Y costs just under $40,000 while customers can buy the cheaper Model 3 for under $37,000. Those versions are expected to help Tesla compete with Chinese models in Europe and Asia.

For fourth-quarter earnings coming out in late January, analysts are expecting the company to post a 3% drop in sales and a nearly 40% drop in earnings per share, according to FactSet. Analysts expect the downward trend in sales and profits to eventually reverse itself as 2026 rolls along.

Musk said earlier last year that a “major rebound” in sales was underway, but investors were unruffled when that didn't pan out, choosing instead to focus on Musk's pivot to different parts of business. He has has been saying the future of the company lies with its driverless robotaxis service, its energy storage business and building robots for the home and factory — and much less with car sales.

Tesla started rolling out its robotaxi service in Austin in June, first with safety monitors in the cars to take over in case of trouble, then testing without them. The company hopes to roll out the service in several cities this year.

To do that successfully, it needs to take on rival Waymo, which has been operating autonomous taxis for years and has far more customers. It also will also have to contend with regulatory challenges. The company is under several federal safety investigations and other probes. In California, Tesla is at risk of temporarily losing its license to sell cars in the state after a judge there ruled it had misled customers about their safety.

“Regulatory is going to be a big issue,” said Wedbush Securities analyst Dan Ives, a well-known bull on the stock. “We're dealing with people's lives.”

Still, Ives said he expects Tesla's autonomous offerings will soon overcome any setbacks.

Musk has said he hopes software updates to his cars will enable hundreds of thousands of Tesla vehicles to operate autonomously with zero human intervention by the end of this year. The company is also planning to begin production of its AI-powered Cybercab with no steering wheel or pedals in 2026.

To keep Musk focused on the company, Tesla’s directors awarded Musk a potentially enormous new pay package that shareholders backed at the annual meeting in November.

Musk scored another huge windfall two weeks ago when the Delaware Supreme Court reversed a decision that deprived him of a $55 billion pay package that Tesla doled out in 2018.

Musk could become the world's first trillionaire later this year when he sells shares of his rocket company SpaceX to the public for the first time in what analysts expect would be a blockbuster initial public offering.