Stroke patients have a new hope for arm rehabilitation thanks to a team from UH. Photo courtesy of UH

Almost 800,000 people in the United States suffer from a stroke annually — and the affliction affects each patient differently. One University of Houston researcher has created a device that greatly improves the lives of patients whose stroke affected motor skills.

UH engineering professor Jose Luis Contreras-Vidal developed a next-generation robotic arm that can be controlled by the user's brainwaves. The portable device uses a brain-computer interface (BCI) developed by Contreras-Vidal. Stroke patient Oswald Reedus, 66, is the first person to use a device of this kind.

Reedus lost the use of his left arm following a stroke that also caused aphasia, or difficulty speaking. While he's been able to recover his ability to speak clearly, the new exoskeleton will help rehabilitate his arm.

When strapped into the noninvasive device, the user's brain activity is translated into motor commands to power upper-limb robotics. As patients like Reedus use the device, more data is collected to improve the experience.

“If I can pass along anything to help a stroke person’s life, I will do it. For me it’s my purpose in life now,” says Reedus in a news release from UH. His mother and younger brother both died of strokes, and Reedus is set on helping the device that can help other stroke patients recover.

Contreras-Vidal, a Hugh Roy and Lillie Cranz Cullen distinguished professor, has led his device from ideation to in-home use, like with Reedus, as well as clinical trials at TIRR Memorial Hermann. The project is funded in part from an $813,999 grant from the National Science Foundation’s newly created Division of Translational Impacts.

"Our project addresses a pressing need for accessible, safe, and effective stroke rehabilitation devices for in-clinic and at-home use for sustainable long-term therapy, a global market size expected to currently be $31 billion," Contreras-Vidal says in the release. "Unfortunately, current devices fail to engage the patients, are hard to match to their needs and capabilities, are costly to use and maintain, or are limited to clinical settings."

Dr. Gerard E. Francisco, chief medical officer and director of the Neuro Recovery Research Center at TIRR Memorial Hermann, is leading the clinical trials for the device. He's also chair and professor in the Department of Physical Medicine and Rehabilitation at McGovern Medical School at UTHealth Houston. He explains that TIRR's partnership with engineering schools such as the Cullen College of Engineering at UH and others around the nation is strategic.

“This is truly exciting because what we know now is there are so many ways we can induce neuroplasticity or how we can boost recovery,” says Francisco in the release. “That collaboration is going to give birth to many of these groundbreaking technologies and innovations we can offer our patients.”

Both parts of the device — a part that attaches to the patient's head and a part affixed to their arm — are noninvasive. Photo courtesy of UH

From opioid research to plastics recycling, here are three research projects to watch out for in Houston. Photo via Getty Images

Here are 3 breakthrough innovations coming out of research at Houston institutions

Research Roundup

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research projects, we look into studies on robotics advancing stroke patient rehabilitation, the future of opioid-free surgery, and a breakthrough in recycling plastics.

The University of Houston's research on enhancing stroke rehabilitation

A clinical trial from a team at UH found that stroke survivors gained clinically significant arm movement and control by using an external robotic device powered by the patients' own brains. Image via UH.edu

A researcher at the University of Houston has seen positive results on using his robotics on stroke survivors for rehabilitation. Jose Luis Contreras-Vidal, director of UH's Non-Invasive Brain Machine Interface Systems Laboratory, recently published the results of the clinical trial in the journal NeuroImage: Clinical.

The testing proved that most patients retained the benefits for at least two months after the therapy sessions ended, according to a press release from UH, and suggested even more potential in the long term. The study equipped stroke survivors who have limited movement in one arm with a computer program that captures brain activity to determine the subject's intentions and then works with a robotic device affixed to the affected arm, to move in response to those intentions.

"This is a novel way to measure what is going on in the brain in response to therapeutic intervention," says Dr. Gerard Francisco, professor and chair of physical medicine and rehabilitation at McGovern Medical School at The University of Texas Health Science Center at Houston and co-principal investigator, in the release.

"This study suggested that certain types of intervention, in this case using the upper robot, can trigger certain parts of brain to develop the intention to move," he continues. "In the future, this means we can augment existing therapy programs by paying more attention to the importance of engaging certain parts of the brain that can magnify the response to therapy."

The trial was funded by the National Institute of Neurological Disorders and Stroke and Mission Connect, part of the TIRR Foundation. Contreras-Vidal is working on a longer term project with a National Science Foundation grant in order to design a low-cost system that would allow people to continue the treatments at home.

"If we are able to send them home with a device, they can use it for life," he says in the release.

Baylor College of Medicine's work toward opioid-free surgery

A local doctor is focused on opioid-free options. Photo via Getty Images

In light of a national opioid crisis and more and more data demonstrating the negative effects of the drugs, a Baylor College of Medicine orthopedic surgeon has been working to offer opioid-free surgery recovery to his patients.

"Thanks to a number of refinements, we are now able to perform hip and knee replacements, ranging from straightforward to very complex cases, without patients requiring a single opioid pill," says Dr. Mohamad Halawi, associate professor and chief quality officer in the Joseph Barnhart Department of Orthopedic Surgery, in a press release.

"Pain is one of patients' greatest fears when undergoing surgery, understandably so," Halawi continues. "Today, most patients wake up from surgery very comfortable. Gone are the days of trying to catch up with severe pain. It was a vicious cycle with patients paying the price in terms of longer hospitalization, slower recovery and myriad adverse events."

Halawi explains that his work focuses on preventative measures ahead of pain occurring as well as cutting out opioids before surgery.

"Opioid-free surgery is the way of the future, and it has become a standard of care in my practice," he says. "The ability to provide safer and faster recovery to all patients regardless of their surgical complexity is gratifying. I want to make sure that pain is one less thing for patients to worry about during their recovery."

Rice University's breakthrough on recycling plastics

A team of scientists have found a use for a material that comes out of plastics recycling. Photo via Rice.edu

Houston scientists has found a new use for an otherwise useless byproduct that comes from recycling plastics. Rice University chemist James Tour has discovered that turbostratic graphene flakes can be produced from pyrolyzed plastic ash, and those flakes can then be added to other substances like films of polyvinyl alcohol that better resist water in packaging and cement paste and concrete, as well as strengthen the material.

"This work enhances the circular economy for plastics," Tour says in a press release. "So much plastic waste is subject to pyrolysis in an effort to convert it back to monomers and oils. The monomers are used in repolymerization to make new plastics, and the oils are used in a variety of other applications. But there is always a remaining 10% to 20% ash that's valueless and is generally sent to landfills.

Tour's research has appeared in the journal Carbon. The co-authors of the study include Rice graduate students Jacob Beckham, Weiyin Chen and Prabhas Hundi and postdoctoral researcher Duy Xuan Luong, and Shivaranjan Raghuraman and Rouzbeh Shahsavari of C-Crete Technologies. The National Science Foundation, the Air Force Office of Scientific Research and the Department of Energy supported the research.

"Recyclers do not turn large profits due to cheap oil prices, so only about 15% of all plastic gets recycled," said Rice graduate student Kevin Wyss, lead author of the study. "I wanted to combat both of these problems."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctors recognized among top creative leaders in business

winners

This week, Fast Company announced its 14th annual list of Most Creative People in Business — and two notable Houstonians made the cut.

Dr. Peter Hotez and his fellow dean of the National School of Tropical Medicine at Baylor College of Medicine, Dr. Maria Elena Bottazzi, were named among the list for “open sourcing a COVID-19 Vaccine for the rest of the world.” The list, which recognizes individuals making a cultural impact via bold achievements in their field, is made up of influential leaders in business.

Hotez and Bottazzi are also co-directors for the Texas Children's Hospital's Center for Vaccine Development -one of the most cutting-edge vaccine development centers in the world. For the past two decades it has acquired an international reputation as a non-profit Product Development Partnership (PDP), advancing vaccines for poverty-related neglected tropical diseases (NTDs) and emerging infectious diseases of pandemic importance. One of their most notable achievements is the development of a vaccine technology leading to CORBEVAX, a traditional, recombinant protein-based COVID-19 vaccine.

"It's an honor to be recognized not only for our team's scientific efforts to develop and test low cost-effective vaccines for global health, but also for innovation in sustainable financing that goes beyond the traditional pharma business model," says Hotez in a statement.

The technology was created and engineered by Texas Children's Center for Vaccine Development specifically to combat the worldwide problem of vaccine access and availability. Biological E Limited (BE) developed, produced and tested CORBEVAX in India where over 60 million children have been vaccinated so far.

Earlier this year, the doctors were nominated for the 2022 Nobel Peace Prize for their research and vaccine development of the vaccine. Its low cost, ease of production and distribution, safety, and acceptance make it well suited for addressing global vaccine inequity.

"We appreciate the recognition of our efforts to begin the long road to 'decolonize' the vaccine development ecosystem and make it more equitable. We hope that CORBEVAX becomes one of a pipeline of new vaccines developed against many neglected and emerging infections that adversely affect global public health," says Bottazzi in the news release from Texas Children's.

Fast Company editors and writers research candidates for the list throughout the year, scouting every business sector, including technology, medicine, engineering, marketing, entertainment, design, and social good. You can see the complete list here

.

Samsung sets sights on nearly $200 billion expansion in Texas

chipping in

As it builds a $17 billion chipmaking factory in Taylor, tech giant Samsung is eyeing a long-term strategy in the Texas area that could lead to a potential investment of close to $200 billion.

Samsung’s plans, first reported by the Austin Business Journal, call for an additional $192.1 billion investment in the Austin area over several decades that would create at least 10,000 new jobs at 11 new chipmaking plants. These facilities would be at the new Taylor site and the company’s existing site in Northeast Austin.

The first of the 11 new plants wouldn’t be completed until 2034, according to the Business Journal.

“Samsung has a history already in the Austin market as an employer of choice, providing high wages, great benefits, and a great working environment. All of this will be on steroids in the not-too-distant future, creating a historic boost to the already booming Austin economy,” John Boyd Jr., a corporate site selection consultant, tells CultureMap.

Samsung’s preliminary plans were revealed in filings with the State of Texas seeking possible financial incentives for the more than $190 billion expansion. The South Korean conglomerate says the filings are part of the company’s long-range planning for U.S. chipmaking facilities.

Given that Samsung’s 11 new plants would be decades in the making, there’s no certainty at this point that any part of the potential $192.1 billion expansion will ever be built.

Last November, Samsung announced it would build a $17 billion chipmaking factory in Taylor to complete its semiconductor operations in Northeast Austin. Construction is underway, with completion set for 2024. Boyd proclaimed last year that the Taylor project will trigger an “economic tsunami” in the quiet Williamson County suburb.

The Taylor facility, which is expected to employ more than 2,000 people, ranks among the largest foreign economic development projects in U.S. history. The impact of a nearly $200 billion cluster of 11 new chipmaking plants would far eclipse the Taylor project.

The Taylor factory will produce advanced chips that power mobile and 5G capabilities, high-performance computing, and artificial intelligence.

------

This article originally ran on CultureMap.