“This breakthrough technology has the potential to reshape the landscape of disease treatment and the future of research and development in the field of cell-based therapies." Photo via Getty Images

Rice University’s Biotech Launchpad has created an electrocatalytic on-site oxygenator, or ecO2, that produces oxygen intended to keeps cells alive. The device works inside an implantable “living pharmacy,” which the Rice Biotech Launch Pad team believes will one day be able to administer and regulate therapeutics within a patient’s body.

Last week, Rice announced a peer-reviewed publication in Nature Communications detailing the development of the novel rechargeable device. The study is entitled “Electrocatalytic on-site oxygenation for transplanted cell-based-therapies.”

How will doctors use the “living pharmacy?” The cell-based therapies implanted could treat conditions that include endocrine disorders, autoimmune syndromes, cancers and neurological degeneration. One major challenge standing in the way of bringing the technology beyond the theoretical has been ensuring the survival of cells for extended periods, which is necessary to create effective treatments. Oxygenation of the cells is an important component to keeping them alive and healthy and the longer they remain so, the longer the therapeutics will be helpful.

Other treatments to deliver oxygen to cells are ungainly and more limited in terms of oxygen production and regulation. According to Omid Veiseh, associate professor of bioengineering and faculty director of the Rice Biotech Launch Pad, oxygen generation is achieved with the ecO2 through water splitting that is precisely regulated using a battery-powered, wirelessly controlled electronic system. New versions will have wireless charging, which means it could last a patient’s entire lifetime.

“Cell-based therapies could be used for replacing damaged tissues, for drug delivery or augmenting the body’s own healing mechanisms, thus opening opportunities in wound healing and treatments for obesity, diabetes and cancer, for example. Generating oxygen on site is critical for many of these ‘biohybrid’ cell therapies: We need many cells to have sufficient production of therapeutics from those cells, thus there is a high metabolic demand. Our approach would integrate the ecO2 device to generate oxygen from the water itself,” says Jonathan Rivnay of Northwestern University, who co-led the study with Tzahi Cohen-Karni of Carnegie Mellon University (CMU).

The study’s co-first authors are Northwestern’s Abhijith Surendran and CMU’s Inkyu Lee.

Northwestern leads the collaboration with Rice to produce therapeutics onsite within the device. The research supports a Defense Advanced Research Projects Agency (DARPA) cooperative agreement worth up to $33 million to develop the implantable “living pharmacy” to control the human body’s sleep and wake cycles.

“This breakthrough technology has the potential to reshape the landscape of disease treatment and the future of research and development in the field of cell-based therapies. We are working toward advancing this technology into the clinic to bring it one step closer to those in need,” says Veiseh.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”

Houston investment firm names tech exec as new partner

new hire

Houston tech executive Robert Kester has joined Houston-based Veriten, an energy-focused research, investment and strategy firm, as technology and innovation partner.

Kester most recently served as chief technology officer for emissions solutions at Honeywell Process Solutions, where he worked for five years. Honeywell International acquired Houston-based oil and gas technology company Rebellion Photonics, where Kester was co-founder and CEO, in 2019.

Honeywell Process Solutions shares offices in Houston with the global headquarters of Honeywell Performance Materials and Technologies. Honeywell, a Fortune 100 conglomerate, employs more than 850 people in Houston.

“We are thrilled to welcome Robert to the Veriten team,” founder and CEO Maynard Holt said in a statement, “and are confident that his technical expertise and skills will make a big contribution to Veriten’s partner and investor community. He will [oversee] every aspect of what we do, with the use case for AI in energy high on the 2025 priority list.”

Kester earned a doctoral degree in bioengineering from Rice University, a master’s degree in optical sciences from the University of Arizona and a bachelor’s degree in laser optical engineering technology from the Oregon Institute of Technology. He holds 25 patents and has more than 25 patents pending.

Veriten celebrated its third anniversary on January 10, the day that the hiring of Kester was announced. The startup launched with seven employees.

“With the addition of Dr. Kester, we are a 26-person team and are as enthusiastic as ever about improving the energy dialogue and researching the future paths for energy,” Holt added.

Kester spoke on the Houston Innovators Podcast in 2021. Listen here

.