"To solve the climate crisis, confidence in emissions data is crucial." Photo via Getty Images

Sustainability has been top of mind for all industries as we witness movements towards reducing carbon emissions. For instance, The Securities and Exchange Commission (SEC) proposed a new rule that requires companies to disclose certain climate-related activities in their reporting on a federal level. Now, industries and cities are scrambling to ensure they have strategies in the right place.

While the data behind sustainability poses challenges across industries, it is particularly evident in oil and gas, as their role in energy transition is of the utmost importance, especially in Texas. We saw this at the COP26 summit in Glasgow last November, for example, in the effort to reduce carbon emissions on both a national and international scale and keep global warming within 1.5 degrees Celsius.

The event also made it clear achieving this temperature change to meet carbon neutrality by 2030 won’t be possible if organizations rely on current methods and siloed data. In short, there is a data problem associated with recent climate goals. So, what does that mean for Houston’s oil and gas industry?

Climate is a critical conversation – and tech can help

Houston has long been considered the oil and gas capital of the world, and it is now the epicenter of energy transition. You can see this commitment by the industry in the nature of the conferences as well as the investment in innovation centers.

In terms of the companies themselves, over the past two years each of the major oil and gas players have organized and grown their low carbon business units. These units are focused on bringing new ideas to the energy ecosystem. The best part is they are not working alone but joining forces to find solutions. One of the highest profile examples is ExxonMobil’s Carbon Capture and Underground Storage project (CCUS) which directly supports the Paris Agreement.

Blockchain technology is needed to improve transparency and traceability in the energy sector and backing blockchain into day-to-day business is key to identifying patterns and making decisions from the data.

The recent Blockchain for Oil and Gas conference, for instance, focused on how blockchain can help curate emissions across the ecosystem. This year has also seen several additional symposiums and meetings – such as the Ion and Greentown Houston – that focus on helping companies understand their carbon footprint.

How do we prove the data?

The importance of harmonizing data will become even more important as the SEC looks to bring structure to sustainability reporting. As a decentralized, immutable ledger where data can be inputted and shared at every point of action, blockchain works by storing information in interconnected blocks and providing a value-add for insuring carbon offsets. To access the data inside a block, users first need to communicate with it. This creates a chain of information that cannot be hacked and can be transmitted between all relevant parties throughout the supply chain. Key players can enter, view, and analyze the same data points securely and with assurance of the data’s accuracy.

Data needs to move with products throughout the supply chain to create an overall number for carbon emissions. Blockchain’s decentralization offers value to organizations and their respective industries so that higher quantities of reliable data can be shared between all parties to shine a light on the areas they need to work on, such as manufacturing operations and the offsets of buildings. Baking blockchain into day-to-day business practice is key in identifying patterns over time and making data-backed decisions.

Oil and gas are key players

Cutting emissions is not a new practice of the oil and gas industry. In fact, they’ve been cutting emissions estimates by as much as 50 percent to avoid over-reporting.

The traditional process of reporting data has also been time-consuming and prone to human error. Manually gathering data across multiple sources of information delivers no real way to trace this information across supply chains and back to the source. And human errors, even if they are accidental, pose a risk to hefty fines from regulatory agencies.

It’s a now-or-never situation. The industry will need to pivot their approaches to data gathering, sharing, and reporting to commit to emissions reduction. This need will surely accelerate the use of technologies, like blockchain, to be a part of the energy transition. While the climate challenges we face are alarming, they provide the basis we need for technological innovation and the ability to accurately report emissions to stay in compliance.

The Energy Capital of the World, for good

To solve the climate crisis, confidence in emissions data is crucial. Blockchain provides that as well as transparency and reliability, all while maintaining the highest levels of security. The technology provides assurance that the data from other smart technologies, like connected sensors and the Internet of Things (IoT), is trustworthy and accurate.

The need for good data, new technology, and corporate commitment are all key to Houston keeping its title as the energy capital of the world – based on traditional fossil fuels as well as transitioning to clean energy.

------

John Chappell is the director of energy business development at BlockApps.

Siloed data, lack of consistency, and confusing regulations are all challenges blockchain can address. Photo via Getty Images

Houston expert: Blockchain is the key to unlocking transparency in the energy industry

guest column

Houston has earned its title as the Energy Transition Capital of the world, and now it has an opportunity to be a global leader of technology innovation when it comes to carbon emissions reporting. The oil and gas industry has set ambitious goals to reduce its carbon footprint, but the need for trustworthy emissions data to demonstrate progress is growing more apparent — and blockchain may hold the keys to enhanced transparency.

Despite oil and gas companies' eagerness to lower carbon dioxide emissions, current means of recording emissions cannot keep pace with goals for the future. Right now, the methods of tracking carbon emissions are inefficient, hugely expensive, and inaccurate. There is a critical need for oil and gas companies to understand and report their emission data, but the complexity of this endeavor presents a huge challenge, driven by several important factors.

Firstly, the supply chain is congested with many different data sources. This puts tracking initiatives into many different silos, making it a challenge for businesses to effectively organize their data. Secondly, the means of calculating, modeling, and measuring carbon emissions varies across the industry. This lack of consistency leaves companies struggling to standardize their outputs, complicating the record-keeping process. Finally, the regional patchwork of regulations and compliance standards is confusing and hard to manage, resulting in potential fines and the headaches associated with being found noncompliant.

Better tracking through blockchain

When it comes to tracking carbon emissions, the potential for blockchain is unmatched. Blockchain is an immutable ledger, that allows multiple parties to securely and transparently share data in near real time across the supply chain. Blockchain solutions could be there at every step of operations, helping businesses report their true emissions numbers in an accurate, secure way.

Oil and gas companies are ready to make these changes. Up to now, they've been using outdated practices, including manually entering data into spreadsheets. With operations spread across the world, there is simply no way to ensure that numbers have been accurately recorded at each and every point of action if everything is done manually. Any errors, even if they're accidental, are subject to pricey fines from regulatory agencies. This forces businesses into the costly position of overestimating their carbon emissions. Instead of risking fines, energy companies choose to deflate their carbon accomplishments, missing out on valuable remediation credits in the process. In addition, executives are forced to make decisions based on this distorted data which leaves projects with great potential to cut carbon emissions either underfunded or abandoned entirely.

In conversations with the super majors, they've reported that they have cut emission reduction estimates by as much as 50% to avoid over-reporting. This is anecdotal, but demonstrates a real problem that results in slower rates to meet targets, missed opportunities, and unnecessary expenditures.

There are so many opportunities to integrate blockchain into the energy industry but tackling the carbon output data crisis should come first. Emissions data is becoming more and more important, and oil and gas companies need effective ways to track their progress to drive success. It's essential to start at the bottom and manage this dilemma at the source. Using blockchain solutions would streamline this process, making data collection more reliable and efficient than ever before.

Houston is on the right track to lead the world in energy innovation — local businesses have made impressive, action-driven efforts to make sure that our community can rightfully be called the Energy Capital of the World. The city is in a great position to drive net-zero carbon initiatives worldwide, especially as sustainability becomes more and more important to our bottom lines. Still, to maintain this command, we need to continue to look forward. Making sure we have the best data is critical as the energy world transitions into the future. If Houston wants to continue to be a leader in energy innovation, we need to look at blockchain solutions to tackle the data problem head on.

------

John Chappell is the director of energy business development at BlockApps.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

Houston students develop cost-effective glove to treat Parkinson's symptoms

smart glove

Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

“We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

“We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

“This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”