James Yockey is a co-founder of Landdox, which recently integrated with ThoughtTrace. Courtesy of Landdox

The biggest asset of most oil and gas companies is their leasehold: the contracts or deeds that give the company the right to either drill wells and produce oil and gas on someone else's land, or give them title to that land outright. A typical oil and gas company is involved in thousands of these uniquely negotiated leases, and the software to keep these documents organized hasn't been updated in more than a decade, says James Yockey, founder of Houston-based Landdox.

Landdox does just that: provides an organizational framework for companies' contracts and leaseholds. The company recently entered into an integration with Houston-based ThoughtTrace, an artificial intelligence program that can scan and pull out key words and provisions from cumbersome, complicated contracts and leaseholds.

With this integration, companies can use ThoughtTrace to easily identify key provisions of their contracts, and then sync up those provisions with their Landdox account. From there, Landdox will organize those provisions into easy-to-use tools like calendars, reminders and more.

The framework behind the integration
The concept behind Landdox isn't entirely new — there are other software platforms built to organize oil and gas company's assets — but it's the first company in this space that's completely cloud-based, Yockey says.

"Within these oil and gas leases and other contracts are really sticky provisions … if you don't understand them, and you're not managing them, it can cause you to forfeit a huge part of your asset base," Yockey says. "It can be a seven-, eight-, or nine-digit loss."

These contracts and leases can be as long as 70 or 80 pages, Yockey says, and have tricky provisions buried in them. Before the integration with ThoughtTrace, oil and gas companies would still have to manually pour over these contracts and identify key provisions that could then be sent over to Landdox, which would organize the data and documents in an easy-to-use platform. The ThoughtTrace integration removes a time-consuming aspect of the process for oil and gas companies.

"[ThoughtTrace] identifies the most needle moving provisions and obligations and terms that get embedded in these contracts by mineral owners," Yockey says. "It's a real source of leverage for the oil and gas companies. You can feed ThoughtTrace the PDF of the lease and their software will show you were these provisions are buried."

The origin story
Landdox was founded in 2015, and is backed by a small group of angel investors. Yockey says the investors provided a "little backing," and added that Landdox is a "very capital-efficient" software company.

Landdox and ThoughtTrace connected in 2017, when the companies were working with a large, private oil and gas company in Austin. The Austin-based oil and gas company opted to use Landdox and ThoughtTrace in parallel, which inspired the two companies to develop an integrated prototype.

"We built a prototype, but it was clear that there was a bigger opportunity to make this even easier," Yockey says. "To quote the CEO of ThoughtTrace, he called [the integration] an 'easy button.'"

The future of ERP software
Landdox's average customer is a private equity-backed E&P or mineral fund, Yockey says, thought the company also works with closely held, family-owned companies. Recently, though, Landdox has been adding a new kind of company to its client base.

"What's interesting is we're starting to add a new customer persona," Yockey says. "The bigger companies – the publicly traded oil and gas companies –have all kinds of different ERP (Enterprise Resource Planning) software running their business, but leave a lot to be desired in terms of what their team really needs."

At a recent North American Prospect Expo summit, Yockey says that half a dozen large capitalization oil and gas producers invited Landdox to their offices, to discuss potentially supplementing the company's ERP software.

"Instead of trying to be all things to all people, we stay in our lane, but find cool ways to connect with other software (companies)," Yockey says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)