James Yockey is a co-founder of Landdox, which recently integrated with ThoughtTrace. Courtesy of Landdox

The biggest asset of most oil and gas companies is their leasehold: the contracts or deeds that give the company the right to either drill wells and produce oil and gas on someone else's land, or give them title to that land outright. A typical oil and gas company is involved in thousands of these uniquely negotiated leases, and the software to keep these documents organized hasn't been updated in more than a decade, says James Yockey, founder of Houston-based Landdox.

Landdox does just that: provides an organizational framework for companies' contracts and leaseholds. The company recently entered into an integration with Houston-based ThoughtTrace, an artificial intelligence program that can scan and pull out key words and provisions from cumbersome, complicated contracts and leaseholds.

With this integration, companies can use ThoughtTrace to easily identify key provisions of their contracts, and then sync up those provisions with their Landdox account. From there, Landdox will organize those provisions into easy-to-use tools like calendars, reminders and more.

The framework behind the integration
The concept behind Landdox isn't entirely new — there are other software platforms built to organize oil and gas company's assets — but it's the first company in this space that's completely cloud-based, Yockey says.

"Within these oil and gas leases and other contracts are really sticky provisions … if you don't understand them, and you're not managing them, it can cause you to forfeit a huge part of your asset base," Yockey says. "It can be a seven-, eight-, or nine-digit loss."

These contracts and leases can be as long as 70 or 80 pages, Yockey says, and have tricky provisions buried in them. Before the integration with ThoughtTrace, oil and gas companies would still have to manually pour over these contracts and identify key provisions that could then be sent over to Landdox, which would organize the data and documents in an easy-to-use platform. The ThoughtTrace integration removes a time-consuming aspect of the process for oil and gas companies.

"[ThoughtTrace] identifies the most needle moving provisions and obligations and terms that get embedded in these contracts by mineral owners," Yockey says. "It's a real source of leverage for the oil and gas companies. You can feed ThoughtTrace the PDF of the lease and their software will show you were these provisions are buried."

The origin story
Landdox was founded in 2015, and is backed by a small group of angel investors. Yockey says the investors provided a "little backing," and added that Landdox is a "very capital-efficient" software company.

Landdox and ThoughtTrace connected in 2017, when the companies were working with a large, private oil and gas company in Austin. The Austin-based oil and gas company opted to use Landdox and ThoughtTrace in parallel, which inspired the two companies to develop an integrated prototype.

"We built a prototype, but it was clear that there was a bigger opportunity to make this even easier," Yockey says. "To quote the CEO of ThoughtTrace, he called [the integration] an 'easy button.'"

The future of ERP software
Landdox's average customer is a private equity-backed E&P or mineral fund, Yockey says, thought the company also works with closely held, family-owned companies. Recently, though, Landdox has been adding a new kind of company to its client base.

"What's interesting is we're starting to add a new customer persona," Yockey says. "The bigger companies – the publicly traded oil and gas companies –have all kinds of different ERP (Enterprise Resource Planning) software running their business, but leave a lot to be desired in terms of what their team really needs."

At a recent North American Prospect Expo summit, Yockey says that half a dozen large capitalization oil and gas producers invited Landdox to their offices, to discuss potentially supplementing the company's ERP software.

"Instead of trying to be all things to all people, we stay in our lane, but find cool ways to connect with other software (companies)," Yockey says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 Houston universities declared among world’s best in 2026 rankings

Declaring the Best

Two Houston universities are in a class of their own, earning top spots on a new global ranking of the world's best universities.

Rice University and University of Houston are among the top 1,200 schools included in the QS World University Rankings 2026. Ten more schools across Texas make the list.

QS (Quacquarelli Symonds), a London-based provider of higher education data and analytics, compiles the prestigious list each year; the 2026 edition includes more than 1,500 universities from around the world. Factors used to rank the schools include academic reputation; employer reputation; faculty-student ratio; faculty research; and international research, students, and faculty.

In Texas, University of Texas at Austin lands at No. 1 in the state, No. 20 in the U.S., and No. 68 globally.

Houston's Rice University is close behind as Texas' No. 2 school. It ranks 29th in the U.S. and No. 119 in the world. Unlike UT, which fell two spots globally this year (from No. 66 to 68), Rice climbed up the charts, moving from 141st last year to No. 119.

University of Houston impresses as Texas' 4th highest-ranked school. It lands at No. 80 in the U.S. and No. 556 globally, also climbing about 100 spots up the chart.

Rice and UH are on a roll in regional, national, and international rankings this year.

Rice earned top-15 national rankings by both Niche.com and Forbes last fall. Rice claimed No. 1 and UH ranked No. 8 in Texas in U.S. News & World Report's 2025 rankings. Rice also topped WalletHub's 2025 list of the best colleges and universities in Texas for 2025.

More recently, in April, both UH and Rice made U.S. News' 2025 list of top grad schools.

In all, 192 U.S. universities made the 2026 QS World University Rankings — the most of any country. Topping the global list is the Massachusetts Institute of Technology (MIT).

“The results show that while U.S. higher education remains the global leader, its dominance is increasingly challenged by fast-rising emerging systems,” says the QS World University Rankings report. “A decade ago, 32 American universities [were] featured in the world’s top 100; today, that number has dropped to 26, and only 11 of these institutions have improved their position this year."

The 12 Texas universities that appear in the QS World University Rankings 2026 list are:

  • University of Texas at Austin, No. 20 in the U.S. and No. 68 in the world (down from No. 66 last year).
  • Rice University, No. 29 in the U.S. and No. 119 in the world (up from No. 141 last year).
  • Texas A&M University, No. 32 in the U.S. and No. 144 in the world (up from No. 154 last year).
  • University of Houston, No. 80 in the U.S. and No. 556 in the world (up from 651-660 last year).
  • University of Texas at Dallas, No. 85 in the U.S. and No. 597 in the world (down from 596 last year).
  • Texas Tech University, No. 104 in the U.S. and No. 731-740 in the world (unchanged from last year).
  • University of North Texas, No. 123 in the U.S. and No. 901-950 in the world (up from 1,001-1,200 last year)
  • Baylor University, tied for No. 136 in the U.S. and at No. 1,001-1,200 in the world (unchanged from last year).
  • Southern Methodist University, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas Arlington, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at San Antonio, tied for No. 136 in the U.S. and at 1,001-1,200 in the world (unchanged from last year).
  • University of Texas at El Paso, No. 172 in the U.S. and at 1,201-1,400 in the world (down from 1,001-1,200 last year).
---

This article originally appeared on CultureMap.com.

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”

Houston hospital performs first fully robotic heart transplant in the U.S.

robotic surgery

A team at Baylor St. Luke’s Medical Center, led by Dr. Kenneth Liao, successfully performed the first fully robotic heart transplant in the United States earlier this year, the Houston hospital recently shared.

Liao, a professor and chief of cardiothoracic transplantation and circulatory support at Baylor College of Medicine and chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke’s Medical Center, used a surgical robot to implant a new heart in a 45-year-old male patient through preperitoneal space in the abdomen by making small incisions.

The robotic technology allowed the medical team to avoid opening the chest and breaking the breast bone, which reduces the risk of infection, blood transfusions and excessive bleeding. It also leads to an easier recovery, according to Liao.

"Opening the chest and spreading the breastbone can affect wound healing and delay rehabilitation and prolong the patient's recovery, especially in heart transplant patients who take immunosuppressants," Liao said in a news release. "With the robotic approach, we preserve the integrity of the chest wall, which reduces the risk of infection and helps with early mobility, respiratory function and overall recovery."

The patient received the heart transplant in March, after spending about four months in the hospital due to advanced heart failure. According to Baylor, he was discharged home after recovering from the surgery in the hospital for a month without complications.

"This transplant shows what is possible when innovation and surgical experience come together to improve patient care," Liao added in the release. "Our goal is to offer patients the safest, most effective and least invasive procedures, and robotic technology allows us to do that in extraordinary ways."