The solution to Houston's workforce problem might be right in front of our eyes. Getty Images

Everyone's job has training associated with it — from surgeons to construction crane operators — and there's a growing market need for faster, more thorough training of our workforce.

"The best way to learn how to do something, is to just get out and do it," says Eric Liga, co-founder of HoustonVR. "But there are a lot of reasons why you can't do that in certain types of training."

Augmented and virtual reality training programs are on the rise, and Liga cites safety, cost, and unpredictable work environments as some of these most obvious reasons reasons to pivot to training employees through extended reality. This type of training also provides portability and has proven higher retention, Liga says in his keynote speech at Station Houston's AR/VR discuss on April 25.

"You get a much higher retention rate when you actually go out and do something — physically going through the motions — than you do sitting in a classroom or reading a book," he says.

As more companies are introducing this type of technology into the workforce, there's a growing need for developers and experts to design these programs. Currently, it's rare for a company to have employees with XR expertise.

"Working on commercial accounts, I see a lot of customers who have done enterprise software — web pages and forums — but it's a very different skill set from simulations," says Jared Bienz, senior software engineer at Microsoft.

So, companies are faced with hiring developers and designers to create these training programs. Ethan LeSueur, who oversees immersive technology at ExxonMobil, says his team benefitted from the cut-throat game design industry. So many developers want to go into video game creation, but there's not enough jobs. At Exxon, developers get to create games — but for training purposes. LeSueur says he looks for a diversity of programming experience when hiring for these types of jobs.

"It's important to not have one skill set," he says. "We're looking for the people who are sort of a swiss army knife. You don't have to know everything, but if they have more than one specific skill set, that's really important."

But hiring a team might not be the only option to AR/VR development. Working with startups has been an avenue for major companies seeking out XR programs.

"People talk about digital transformation all the time, but half the time we wouldn't know what that looked like if that slapped us in the face," LeSueur says. "That's what we're asking startups to do — help slap us in the face."

LeSueur says that proving cost effectiveness is extremely important for startups looking to win big companies as clients, but so is passion. The complexity of the process as well as all the red tap of business calls for passion from a startup.

"We're trying to take a complicated physical process and digitize it," LeSueur says. "That means there's going to be a lot of back and forth."

From the startup perspective, it's not always easy working with major corporations – especially within oil and gas. Amanda, who works with construction clients and larger companies as an instructor at ITI, recommends having someone on the inside to look out for you.

"I think it's really important to have an internal champion who really owns the product and wants to see it through to its last degree of integration."

On display

Courtesy of Station Houston

After the panel, Station Houston VR companies showed off their programming.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.