The solution to Houston's workforce problem might be right in front of our eyes. Getty Images

Everyone's job has training associated with it — from surgeons to construction crane operators — and there's a growing market need for faster, more thorough training of our workforce.

"The best way to learn how to do something, is to just get out and do it," says Eric Liga, co-founder of HoustonVR. "But there are a lot of reasons why you can't do that in certain types of training."

Augmented and virtual reality training programs are on the rise, and Liga cites safety, cost, and unpredictable work environments as some of these most obvious reasons reasons to pivot to training employees through extended reality. This type of training also provides portability and has proven higher retention, Liga says in his keynote speech at Station Houston's AR/VR discuss on April 25.

"You get a much higher retention rate when you actually go out and do something — physically going through the motions — than you do sitting in a classroom or reading a book," he says.

As more companies are introducing this type of technology into the workforce, there's a growing need for developers and experts to design these programs. Currently, it's rare for a company to have employees with XR expertise.

"Working on commercial accounts, I see a lot of customers who have done enterprise software — web pages and forums — but it's a very different skill set from simulations," says Jared Bienz, senior software engineer at Microsoft.

So, companies are faced with hiring developers and designers to create these training programs. Ethan LeSueur, who oversees immersive technology at ExxonMobil, says his team benefitted from the cut-throat game design industry. So many developers want to go into video game creation, but there's not enough jobs. At Exxon, developers get to create games — but for training purposes. LeSueur says he looks for a diversity of programming experience when hiring for these types of jobs.

"It's important to not have one skill set," he says. "We're looking for the people who are sort of a swiss army knife. You don't have to know everything, but if they have more than one specific skill set, that's really important."

But hiring a team might not be the only option to AR/VR development. Working with startups has been an avenue for major companies seeking out XR programs.

"People talk about digital transformation all the time, but half the time we wouldn't know what that looked like if that slapped us in the face," LeSueur says. "That's what we're asking startups to do — help slap us in the face."

LeSueur says that proving cost effectiveness is extremely important for startups looking to win big companies as clients, but so is passion. The complexity of the process as well as all the red tap of business calls for passion from a startup.

"We're trying to take a complicated physical process and digitize it," LeSueur says. "That means there's going to be a lot of back and forth."

From the startup perspective, it's not always easy working with major corporations – especially within oil and gas. Amanda, who works with construction clients and larger companies as an instructor at ITI, recommends having someone on the inside to look out for you.

"I think it's really important to have an internal champion who really owns the product and wants to see it through to its last degree of integration."

On display

Courtesy of Station Houston

After the panel, Station Houston VR companies showed off their programming.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.