Haleh Ardebili (left) has been appointed as assistant vice president of Entrepreneurship and Startup Ecosystem, and Michael Harold as assistant vice president for Intellectual Property and Industrial Engagements at the University of Houston. Photo via UH

Two professors have assumed new leadership roles in the University of Houston’s Office of Technology, Transfer, and Innovation.

Haleh Ardebili, the Kamel Salama Endowed Professor of Mechanical Engineering, has been named assistant vice president of entrepreneurship and startup ecosystem. Michael Harold, Cullen Engineering Professor of Chemical and Biomolecular Engineering, has been named assistant vice president for intellectual property and industrial engagements.

Ardebili and Harold “are both tested leaders in their respective areas —they are already contributing to our rich academic environment with their knowledge, expertise and commitment to innovation,” says Ramanan Krishnamoorti, vice president for energy and innovation at UH, in a statement. “Having them helm our growing team will help UH continue its culture of innovation and contribution to society.”

In her new role, Ardebili will oversee entrepreneurship and startup efforts at UH. She will direct the startup and entrepreneurship staff within the Office of Technology, Transfer, and Innovation (OTTI).

Ardebili, who joined the university in 2004, previously was director of the Cullen College of Engineering’s Innovation and Entrepreneurship Initiative.

In his new role, Harold will lead the university’s technology transfer activities. He will direct the OTTI licensing and IP management staff.

Harold worked at DuPont in various technical and managerial positions between 1993 and 2000. He joined UH in 2000 as chair of the Department of Chemical Engineering. He served as chair until 2008 and again from 2013 to 2020.

“Both positions will play integral roles in increasing faculty engagement, facilitating innovations from research labs to market, and enhancing collaboration with internal and external stakeholders. These appointments underscore UH’s commitment to driving innovation, economic development, and industry partnerships,” the university says in the release.

Seven student-founded startups pitched their business plans at an annual NASA event. Photo via NASA.gov

Student startups pitch out-of-this-world tech at Houston competition

space tank

Several groups of students from all over the United States tapped into technology developed by NASA to create business plans. The teams competed in Houston last week for thousands of dollars, and one team went home with the win.

NASA’s Minority University Research and Education Project, or MUREP, hosted its annual "Space Tank" pitch event, MUREP Innovation and Technology Tech Transfer Idea Competition, or MITTIC, last week at Space Center Houston. Seven teams from across the country — including three Texas teams — pitched business plans based on NASA-originated technology.

“Students and faculty members of MITTIC are notably engaging with our agency, but they are helping to fulfill our mission to make the earth a better, safer place creating products and services that will shape the future," says Donna Shafer, associate director at Johnson Space Center.

All seven teams — each led by a minority student — went home with at least $5,000 as a prize for making it to the finals, but one team from the University of Massachusetts at Boston took home first place and a $10,000 prize. The winning team is also invited to join Team Piezo Pace from the University of St. Thomas, Houston, in a visit to NASA’s Ames Research Center in Silicon Valley, California, for additional look in the innovation and entrepreneurial space.

The judges for the event included: Hope Shimabuku, director of the U.S. Patent and Trademark Office for the Texas Region; Megan Ortiz, project manager at NASA; Lawrence Cosby, vice president of IP strategy at JPMorgan Chase & Co; Terik Tidwell, director of inclusive innovation at VentureWell; Jorge Valdes, program advisor on STEM education and intellectual property at the United States Patent and Trademark Office; Walt Ugalde, economic development executive at NASA; and Laura Barron, autonomous systems technology deputy project manager at NASA.

The seven finalist teams — and the technology they are working on — are as follows:

  • Lone Star College - CyFair’s team Aquarius Solutions, which pitched its water purification product, ClearFlow, based off an ammonia removal system developed at NASA
  • Fayetteville State University in North Carolina’s ASAPA team pitched their Autonomous Solar Array Assembly drone technology that’s based on NASA’s Print-assisted Photovoltaic Assembly system for automated printing of solar panels.
  • University of Houston-Clear Lake’s team AstroNOTS has identified a technology to address the safety of wildfire rescue teams. The PyroCap is a emergence fire shelter based on NASA’s Lightweight Flexible Thermal Protection System.
  • Santa Monica College in California’s team, BREATHE, pitched a noninvasive technology to replace traditional mammograms. The device can analyze breath through a NASA-designed sensor.
  • University of Massachusetts-Boston’s winning team, LazerSense Solutions, is working on a technology for smoke and gas detection. The PartaSense device can detect everything from carbon monoxide to black mold. It’s based on NASA’s MPASS IP.
  • Hartnell College in California’s team PanterBotics is working on an zero-emission electric vehicle, the OmniZero, to address climate change. The technology, a modular robotic vehicle, originated at NASA.
  • University of Texas at Austin’s Longhorn Innovators, who pitched a thinking cap technology to increase and enhance focus. The wearable device is based on NASA technology ZONE, or Zeroing Out Negative Effects, an analysis from EEG sensors.

A thorough IP audit separates the wheat from the chaff. Image via Getty Images

Why intellectual property audits are make or break for businesses, according to Houston expert

guest column

Every company with a business based in whole or in part on important intellectual property should protect that property with regularly scheduled intellectual property “audits.” Failing to do so may not only endanger valuable, company-owned patents and trademarks, but also make the business less profitable than it could be.

An IP audit is especially critical when a business is being sold, when a company is planning to buy another business, when a patent is being challenged by a competitor, when a company is looking for new financing or going public, and when there is a change in top management or employees in critical positions have left. A regularly scheduled IP audit can prevent panic, confusion and unwelcome surprises when these major events occur, because management will already have a good working knowledge of the status of all intellectual property.

To begin with, a thorough audit separates the wheat from the chaff. Which patents are central to the company’s business and must be carefully maintained in force? Are there other patents that are no longer important or have been superseded by newer developments and can safely be ignored and allowed to lapse?

Patents should be filed wherever the company’s products are sold and fees on all important patents must be carefully kept up to date. Fees to maintain international patents are often especially expensive but should be updated when necessary, nonetheless. Sometimes, when a company’s trademarks are reviewed, management learns that they have never been federally registered.

Auditors also may find that existing patents are no longer adequate to protect the products that are actually being sold. The products may have “moved on” through further development or application to new uses, but the relevant patents have not. Those patents should be updated immediately with new filings. It’s also critical to determine whether the products made and sold by the company could possibly infringe patents held by competitors—or whether the reverse is true, that other companies’ products are infringing the patents held by the company being audited.

A careful examination of intellectual property can also result in positive developments: auditors may discover that some patents are more valuable than anyone knew and can be licensed to produce another revenue stream for the company—or licensing can be expanded beyond the present level.

Beyond the focus on patents and trademarks, an IP audit should entail a close examination of all contracts and agreements relating to intellectual property. Pinning down exactly who owns the property is just as important as keeping patents up to date. This entails delving into development agreements, nondisclosure agreements, employment agreements, work-for-hire and sales contracts, to make sure ownership of a company’s intellectual property has not been ceded to, or shared with, a third party.

Software is particularly problematic when it comes to inadvertent infringement of the rights of others. What software is being used internally? Where did it come from and what are the limitations on its use? IT professionals don’t always realize that even open-source code requires a license.

This entire process also needs to be applied to analyzing the intellectual property of a prospective acquisition. Investigators may discover that patents belonging to the acquisition are not all appropriate for the acquiring company’s products, fees are not up to date or there are issues with IP ownership or validity. All of these factors may result in substantial savings on the purchase—or a decision not to purchase at all.

------

Puja Detjen is an intellectual property attorney and partner in the Houston office of Patterson + Sheridan.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

10 most-promising energy tech startups named at annual Houston event

top companies

Investors from around the world again identified the most-promising energy tech startups at the Rice Alliance for Technology and Entrepreneurship's annual event.

"The recognition that Houston is the epicenter of energy transition is growing. It's something we are championing as much as possible so that the world can know exactly what we're doing," Paul Cherukuri, chief innovation officer at Rice University says at the 21st annual Energy Tech Venture Forum.

The event took place during the inaugural Houston Energy and Climate Startup Week, and nearly 100 startups from 23 states and seven countries pitched investors Wednesday, September 11, and Thursday, September 12. At the conclusion of the event, the investors decided on 10 companies deemed "most promising" from the presentations.

This year's selected companies are:

  • Revterra, a Houston-based company innovating within kinetic battery technology to enable faster and cleaner electric vehicle charging.
  • From Austin, 360 Mining is a modular data center provider for the oil and gas producers.
  • New York company Andium is a centralized and optimized operations platform for large energy companies.
  • Elementium Materials, a local Katy-based company, created its battery technology that originated out of MIT.
  • Splight is a San Mateo, California-based technology platform that provides real-time operational data based on inverter-based resources assets.
  • Los Angeles-based Mitico, one of the Rice Alliance Clean Energy Accelerator's class 4 participants, provides services and equipment for carbon capture through its granulated metal carbonate sorption technology.
  • From Cambridge, Massachusetts, Osmoses is changing the way molecular gas separations are performed within the chemical, petrochemical, and energy industries.
  • Rice Alliance Clean Energy Accelerator class 4 participant CORROLYTICS, based in Houston, has a corrosion detection and monitoring technology. The company also won over the crowd and secured the People's Choice win too.
  • Ardent, based in New Castle, Delaware, has developed a membrane technology for point-source carbon capture.
  • New Haven, Connecticut-based Oxylus Energy produces an alternative fuel from converting CO2 into green methanol.

Last year, investors named its selection of most-promising companies at Rice.

"We have a responsibility as a city to lead energy transition," Cherukuri continues. "A lot of the investments we're making at Rice are going to change the world."

Scientists use Houston rainwater to explore origins of life on Earth

let it rain

A flask of Houston’s rain helped answer a long-running question about the origin of cellular life.

The solution is proposed by two University of Houston scientists, William A. Brookshire Department of Chemical Engineering (UH ChBE) former grad student Aman Agrawal (now a postdoctoral researcher at University of Chicago’s Pritzker School of Molecular Engineering) and Alamgir Karim, UH Dow Chair and Welch Foundation Professor of chemical and biomolecular engineering, and director of both the International Polymer & Soft Matter Center and the Materials Engineering Program at UH. They were joined by UChicago PME Dean Emeritus Matthew Tirrell and Nobel Prize-winning biologist Jack Szostak in an article published last week in Scientific Advances.

For two decades, scientists like Szostak have hypothesized that RNA fragments were the first components of life to form in the Earth’s primordial seas 3.8 million years ago. Although DNA is an essential component of cellular life, it can’t fold proteins, making it unlikely to be the initial starting point. Since RNA can fold proteins, it could have been the catalyst for cellular growth and evolution.

The problem is that seawater molecules allow RNA to bond and change too quickly, often within minutes. Rapid dissipation means no segregation of material, and thus no evolution. Szostak himself proved in 2014 that regular seawater doesn’t allow RNA fragments to form the membranes necessary for cellular life.

Then along comes Agrawal. He wasn’t looking into the origin of life. He was an engineer studying the properties of complex liquids for his doctorate. Karim was his thesis adviser and introduced Agrawal to Tirrell, who brought up the RNA problem over a lunch and some theories about how if the water was distilled it may have solved it. Where would you get distilled water 3.8 billion years ago?

“I spontaneously said ‘rainwater,’” says Karim. “His eyes lit up and he was very excited at the suggestion. So, you can say it was a spontaneous combustion of ideas or ideation.”

Using RNA samples from Szostak, they saw that distilled water increased the differences in exchange rate between samples from minutes to days, long enough for the RNA to begin mutation.

Distilled lab water is nothing like prehistoric rain, though. Luckily, a typical Houston downpour occurred during the research. Agrawal and fellow UH graduate student, Anusha Vonteddu ran outside with beakers to collect some. The samples again formed meshy walls, separating the RNA and possibly showing how life began from these fragments billions of years ago.

“The molecules we used to build these protocells are just models until more suitable molecules can be found as substitutes,” Agrawal said. “While the chemistry would be a little bit different, the physics will remain the same.”

------

This article originally ran on CultureMap.