The Liu Idea Lab for Innovation and Entrepreneurship at Rice University has named its 2025 Rice Innovation Fellows cohort. Photo via Rice University

The Liu Idea Lab for Innovation and Entrepreneurship (Lilie) has announced its 2025 Rice Innovation Fellows cohort, which includes students developing cutting-edge thermal management solutions for artificial intelligence, biomaterial cell therapy for treating lymphedema, and other innovative projects.

The program aims to support Rice Ph.D. students and postdocs in turning their research into real-world solutions and startups.

“Our fourth cohort of fellows spans multiple industries addressing the most pressing challenges of humanity,” Kyle Judah, Lilie’s executive director, said in a news release. “We see seven Innovation Fellows and their professors with the passion and a path to change the world.”

The seven 2025 Innovation Fellows are:

Chen-Yang Lin, Materials Science and Nanoengineering, Ph.D. 2025

Professor Jun Lou’s Laboratory

Lin is a co-founder of HEXAspec, a startup that focuses on creating thermal management solutions for artificial intelligence chips and high-performance semiconductor devices. The startup won the prestigious H. Albert Napier Rice Launch Challenge (NRLC) competition last year and also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track.

Sarah Jimenez, Bioengineering, Ph.D. 2027

Professor Camila Hochman-Mendez Laboratory

Jimenez is working to make transplantable hearts out of decellularized animal heart scaffolds in the lab and the creating an automated cell delivery system to “re-cellularize” hearts with patient-derived stem cells.

Alexander Lathem, Applied Physics and Chemistry, Ph.D. 2026

Professor James M. Tour Laboratory

Lathem’s research is focused on bringing laser-induced graphene technology from “academia into industry,” according to the university.

Dilrasbonu Vohidova is a Bioengineering, Ph.D. 2027

Professor Omid Veiseh Laboratory

Vohidova’s research focuses on engineering therapeutic cells to secrete immunomodulators, aiming to prevent the onset of autoimmunity in Type 1 diabetes.

Alexandria Carter, Bioengineering, Ph.D. 2027

Professor Michael King Laboratory

Carter is developing a device that offers personalized patient disease diagnostics by using 3D culturing and superhydrophobicity.

Alvaro Moreno Lozano, Bioengineering, Ph.D. 2027

Professor Omid Veiseh Lab

Lozano is using novel biomaterials and cell engineering to develop new technologies for patients with Type 1 Diabetes. The work aims to fabricate a bioartificial pancreas that can control blood glucose levels.

Lucas Eddy, Applied Physics and Chemistry, Ph.D. 2025

Professor James M. Tour Laboratory

Eddy specializes in building and using electrothermal reaction systems for nanomaterial synthesis, waste material upcycling and per- and polyfluoroalkyl substances (PFAS) destruction.

This year, the Liu Lab also introduced its first cohort of five commercialization fellows. See the full list here.

The Rice Innovation Fellows program assists doctoral students and postdoctoral researchers with training and support to turn their ideas into ventures. Alumni have raised over $20 million in funding and grants, according to Lilie. Last year's group included 10 doctoral and postdoctoral students working in fields such as computer science, mechanical engineering and materials science.

“The Innovation Fellows program helps scientist-led startups accelerate growth by leveraging campus resources — from One Small Step grants to the Summer Venture Studio accelerator — before launching into hubs like Greentown Labs, Helix Park and Rice’s new Nexus at The Ion,” Yael Hochberg, head of the Rice Entrepreneurship Initiative and the Ralph S. O’Connor Professor in Entrepreneurship, said in the release. “These ventures are shaping Houston’s next generation of pillar companies, keeping our city, state and country at the forefront of innovation in mission critical industries.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.