"Companies and stakeholders across the energy spectrum need to act together and act fast." Photo via Getty Images

Houston is home to some of the nation's largest oil and gas exploration and production firms, making it one of the world’s most important energy capitals. Growing regional support for pioneering clean tech, such as carbon capture, will help achieve the crucial transition to net zero whilst maintaining economic stability, boosting local industries and creating jobs.

According to the International Energy Agency (IEA), North America and Asia Pacific are expected to hold the largest share in carbon capture capacity. North America’s world-leading carbon capture potential comes as no surprise given the nation’s dominance in oil and gas, and ideal geology for sequestration.

The IEA’s recently published World Energy Outlook 2023 depicts a global market that is in transition. With more companies, world leaders and governments recognizing that a shift towards sustainable energy is both inevitable and transformative, the question is no longer whether we switch to clean energy, but rather how soon the transition can happen.

For every $1 in investment spending on fossil fuels globally, $1.8 is now being spent to develop clean energy, according to the IEA. Although the clean energy market has almost doubled in the past five years to reach an estimated $2.8 trillion in 2023, investment needs to hit $4.2 trillion per year by 2030 to achieve the universally shared goal of net zero. The IEA believes around 1 Gigaton of CO2 must be captured in 2030, rising to 6 Gigatons by 2050 to achieve the Net Zero Emissions by 2050 Scenario (termed NZE Scenario). This presents a tremendous opportunity for government stakeholders and the business community in Houston to turbocharge the economy and protect the planet from the impact of climate change.

While volatility around the energy market lingers, sustainable technologies remain one of the most dynamic areas of global energy investment. An essential ingredient to its success is bringing on board innovators, entrepreneurs, corporations, and financiers to ensure technology innovation is front and center in facilitating the clean energy transition.

Carbon capture technology is critical, but energy leaders and hard-to-abate industries are under pressure to move faster. To do that, the carbon capture industry must scale up its deployment and increase adoption if hard-to-abate sectors are to address the 30 percent of global CO2 emissions for which they are responsible. Governments have a pivotal role to play in providing financial, regulatory and policy incentives, facilitating a collaborative environment between financiers, hard-to-abate operators, and clean tech companies. While we are moving in the right direction, there is no room for complacency or procrastination given the short timescales for meaningful action.

Over the past several years, Carbon Clean, a global company that is revolutionizing carbon capture, has enjoyed significant expansion in North America. Following the passage of the Inflation Reduction Act (IRA) in August 2022, we saw huge interest in our modular industrial carbon capture technology almost overnight, resulting in a 64 percent increase in inquiries from the U.S. To meet this booming demand, we have opened a U.S. headquarters in Houston, and have plans to double our U.S. headcount to meet industry requirements for our scalable and cost-effective technology, CycloneCC. In short, the United States is poised to become our biggest market. Given our latest lead investor and partner is Houston-based Chevron New Energies, there is no better place than Houston to drive innovation in the country’s energy sector.

The IRA did more than just bring in new inquiries for our breakthrough technology – it also signaled to the energy sector that the federal government is getting serious about bringing emissions down. The impact of the IRA cannot be overstated, especially for the point-source carbon capture technology pioneered by Carbon Clean. While the IRA involves billions of dollars of public investment, it is set up in such a way that companies must make substantial investments first, acting as a down payment on fostering jobs and ensuring the business community is delivering ambitious climate action. The benefits are being felt locally as well – cities like Houston are at the forefront of what the IRA has to offer, taking advantage of these investments and reducing emissions.

Companies and stakeholders across the energy spectrum need to act together and act fast. With the dramatic growth required for carbon capture to have full effect, it will be essential for government, industry, and innovators to join together to concentrate on a number of projects and clusters. We are confident that with new cutting-edge technology and broad collaboration we can rapidly get the world on the right path to net zero.

———

Prateek Bumb is CTO and co-founder of Carbon Clean and the principal innovator of Carbon Clean’s industrial carbon capture technologies.

This article originally ran on EnergyCapital.
Only time will tell, but this expert believes the Inflation Reduction Act of 2022 will be a boon to energy tech startups in Texas. Photo via Getty Images

Expert: How recent inflation legislation could affect Texas energy startups, investors

guest column

The recently passed Inflation Reduction Act of 2022 includes $369 billion in investment in climate and energy policies, the largest investment in United States history to address climate change. The IRA could be a boon to Texas startups involved in clean energy, clean manufacturing and clean innovation.

Government policy and funding are critical to supporting the research and development for new technologies, which solve complex challenges and require significant upfront and long-term commitments of investment. Early government investment gives private investors more incentive to invest in the later commercialization and scaling of these businesses, and has a multiplier effect in accelerating the development, commercialization, and deployment of new technologies in the time needed in the market to capitalize on energy business opportunities and achieve climate goals.

The IRA’s biggest impact on climate tech businesses is through tax credits and direct investment. The IRA’s expanded tax credits will make it easier to fund and build projects, help reduce cost of construction, and help make renewable energy projects more competitive, encourage more funding and building of new projects, and bring new jobs and economic development. The IRA’s direct investments allow for companies developing new technologies to obtain grants and loans that help them develop their solutions while not diluting their investors, helping them build more value in their businesses and making them more attractive for later investment.

Texas is well positioned to be an energy transition and clean energy leader and beneficiary of the IRA. The state is home to major energy companies, and their technical expertise, know-how and experience in energy, and energy technology is unparalleled. There is huge momentum in innovation in energy transition and energy tech, and there is great research coming out of university and corporate R&D programs. For example, Texas is home to more than 20 energy-focused research and development centers and dozens of energy tech companies. And Texas is already the largest producer of wind power in the U.S.

Texas startups across industries were already attracting massive investment before the IRA became law. According to Pitchbook and the National Venture Capital Association, Texas startups overall raised a record-high $10.55 billion in venture capital in 2021, an increase of 123 percent from 2020’s $4.73 billion.

Early-stage investment in climate tech hit a record $53.7 billion in 2021. While the totals this year aren’t likely to reach 2021 levels, climate tech investors have said they aren’t seeing the size of pullbacks and slowdowns in other sectors. Despite the VC slowdown this year, clean tech and climate tech have remained attractive investments. This includes Texas. For example, the Rice Alliance Clean Energy Accelerator reported in August that 17 of its early- to mid-stage startups have already raised more than $54.5 million this year. Also in August, geothermal startup Fervo Energy, based in Houston, raised $138 million in new VC funding. Earlier in February, Houston’s Zeta Energy, which has developed a battery for the electric vehicle and energy storage markets, closed a $23 million financing round. We expect continued funding in this space.

Large corporates in Texas are building external innovation programs such as venture arms and accelerators. For instance, Houston’s Halliburton Company developed Halliburton Labs, an accelerator that has backed a number of startups in the carbon capture, clean hydrogen, and solar energy tech developers. Big energy companies are also joining Texas-based accelerator hubs such as The Ion in Houston. The Ion’s founding partners include Aramco Americas, Chevron Technology Ventures, and ExxonMobil.

It will require long term efforts to achieve results in climate tech and clean energy projects, but as the benefits of the IRA materialize, more startups in Texas will have the ability to obtain more long-term financial support and resources from all of the sources – government, universities, and research organizations, venture investors and corporations — that are required to develop solutions to the energy and climate challenges and capitalize on the business opportunities of today and tomorrow. Startups are creating transformative innovations that are key to the United States being a leader in clean energy and fighting climate change. And there’s no better place to do that than in Texas.

------

Michael Torosian is a partner in the corporate practice in the San Francisco office of Baker Botts. He is outside general counsel to emerging companies and their investors and advisors at all stages.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.