Nurturing what is known as “promotion focus” can help managers spot fresh ideas.
Photo by Diego PH on Unsplash

Having a “promotion focus” really does create a mental lens through which new ideas are more visible.

Key findings:

  • New ideas can be crucially important to businesses, driving innovation and preventing stagnation.
  • Recognizing those ideas, though, isn’t always easy.
  • Nurturing what is known as “promotion focus” can help managers spot fresh ideas.

Whenever the late surgeon Michael DeBakey opened a human chest, he drew on a lifetime of resources: the conviction that heart surgery could and should be vastly improved, the skill to venture beyond medicine’s known horizons and the vision to recognize new ideas in everyone around him, no matter how little formal training they had.

Appreciating new ideas is the heartbeat of business as well as medicine. But innovation is surprisingly hard to recognize. In a pioneering 2017 article, Rice Business Professor Jing Zhou and her colleagues published their findings on the first-ever study of the traits and environments that allow leaders to recognize new ideas.

Recent decades have produced a surge of research looking at how and when employees generate fresh ideas. But almost nothing has been written on another crucial part of workplace creativity: a leader’s ability to appreciate new thinking when she sees it.

Novelty, after all, is what drives company differentiation and competitiveness. Work that springs from new concepts sparks more investigation than work based on worn, already established thought. Companies invest millions to recruit and pay star creatives.

Yet not every leader can spot a fresh idea, and not every workplace brings out that kind of discernment. In four separate studies, Zhou and her coauthors examined exactly what it takes to see a glittering new idea wherever it appears. Their work sets the stage for an entirely new field of future research.

First, though, the team had to define their key terms. “Novelty recognition” is the ability to spot a new idea when someone else presents it. “Promotion focus,” previous research has shown, is a comfort level with new experiences that evokes feelings of adventure and excitement. “Prevention focus” is the opposite trait: the tendency to associate new ideas with danger, and respond to them with caution.

But does having “promotion focus” as opposed to “prevention focus” color the ability to see novelty? To find out, Zhou’s team came up with an ingenious test, artificially inducing these two perspectives through a series of exercises. First, they told 92 undergraduate participants that they would be asked to perform a set of unrelated tasks. Then the subjects guided a fictional mouse through two pencil and paper maze exercises.

While one exercise showed a piece of cheese awaiting the mouse at the end of the maze (the promise of a reward), the other maze depicted a menacing owl nearby (motivation to flee).

Once the participants had traced their way through the mazes with pencils, they were asked to rate the novelty of 33 pictures — nine drawings of space aliens and 24 unrelated images. The students who were prepped to feel an adventurous promotion focus by seeking a reward were much better at spotting the new or different details among these images than the students who’d been cued to have a prevention focus by fleeing a threat.

The conclusion: a promotion focus really does create a mental lens through which new ideas are more visible.

Zhou’s team followed this study with three additional studies, including one that surveyed 44 human resource managers from a variety of companies. For this study, independent coders rated the mission statements of each firm, assessing their cultures as “innovative” or “not innovative.” The HR managers then evaluated a set of written practices — three that had been in use for years, and three new ones that relied on recent technology. The managers from the innovative companies were much better at rating the new HR practices for novelty and creativity. To recognize novelty, in other words, both interior and external environments make a difference.

The implications of the research are groundbreaking. The first ever done on this subject, it opens up a completely new research field with profound questions. Can promotion focus be created? How much of this trait is genetic, and how much based on natural temperament, culture, environment and life experience? Should promotion focus be cultivated in education? If so, what would be the impact? After all, there are important uses for prevention focus, such as corporate security and compliance. Meanwhile, how can workplaces be organized to bring out the best in both kinds of focus?

Leaders eager to put Zhou’s findings to use right away, meanwhile, might look to the real-world model of Michael DeBakey. Practice viewing new ideas as adventures, seek workplaces that actively push innovation and, above all, cultivate the view that every coworker, high or low, is a potential source of glittering new ideas.

---

This article originally appeared on Rice Business Wisdom.

Jing Zhou is the Mary Gibbs Jones Professor of Management and Psychology in Organizational Behavior at the Jones Graduate School of Business of Rice University. Zhou, J., Wang, X., Song, J., & Wu, J. (2017). "Is it new? Personal and contextual influences on perceptions of novelty and creativity." Journal of Applied Psychology, 102(2): 180-202.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson launches $10M collaboration to advance personalized cancer treatment tech

fighting cancer

The University of Texas MD Anderson Cancer Center and Japan’s TOPPAN Holdings Inc. have announced a strategic collaboration to co-develop TOPPAN Holdings’ 3D cell culture, or organoid, technology known as invivoid.

The technology will be used as a tool for personalized cancer treatments and drug screening efforts, according to a release from MD Anderson. TOPPAN has committed $10 million over five years to advance the joint research activities.

“The strategic alliance with MD Anderson paves a promising path toward personalized cancer medicine," Hiroshi Asada, head of the Business Innovation Center at TOPPAN Holdings, said in a news release.

Invivoid is capable of establishing organoid models directly from patient biopsies or other tissues in a way that is faster and more efficient. Researchers may be able to test a variety of potential treatments in the laboratory to understand which approach may work best for the patient, if validated clinically.

“Organoids allow us to model the three-dimensional complexity of human cancers in the lab, thus allowing us to engineer a powerful translational engine—one that could not only predict how patients will respond to therapy before treatment begins but also could help to reimagine how we discover and validate next-generation therapies," Dr. Donna Hansel, division head of pathology and laboratory medicine at MD Anderson, added in the news release. “Through this collaboration, we hope to make meaningful progress in modeling cancer biology for therapeutic innovation.”

The collaboration will build upon preclinical research previously conducted by MD Anderson and TOPPAN. The organizations will work collaboratively to obtain College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA) certifications for the technology, which demonstrate a commitment to high-quality patient care. Once the certifications are obtained, they plan to conduct observational clinical studies and then prospective clinical studies.

“We believe our proprietary invivoid 3D cell culture technology, by enabling the rapid establishment of organoid models directly from patient biopsies, has strong potential to help identify more effective treatment options and reduce the likelihood of unnecessary therapies,” Asada added in the release. “Through collaboration on CAP/CLIA certification and clinical validation, we aim to bring this innovation closer to real-world patient care and contribute meaningfully to the advancement of cancer medicine."

NASA taps Houston-area company to explore low-cost spacecraft delivery

Webster-based Arrow Science and Technology is one of six companies picked by NASA to study low-cost ways to launch and deliver spacecraft for difficult-to-reach orbits.

In all, nine studies will be performed under a roughly $1.4 million award from NASA. Another Texas company, Cedar Park-based Firefly Aerospace, is also among the six companies working on the studies.

“With the increasing maturity of commercial space delivery capabilities, we’re asking companies to demonstrate how they can meet NASA’s need for multispacecraft and multiorbit delivery to difficult-to-reach orbits beyond current launch service offerings,” Joe Dant, a leader of the Launch Services Program at NASA’s Kennedy Space Center in Florida, said in a news release. “This will increase unique science capability and lower the agency’s overall mission costs.”

Arrow is teaming up with Rockville, Maryland-based Quantum Space for its study. Quantum’s Ranger orbital transfer vehicle provides payload delivery services for spacecraft heading to low-Earth and lunar orbits.

Arrow, a Native American-owned small business, offers technical support and hardware manufacturing services for the space and defense industries.

James Baker, founder and president of Arrow, said in a news release that the combination of his company’s deployment systems with Quantum’s Ranger vehicle “allows our customers the ability to focus on the development of their payload[s] while we take care of getting them where they need to be.”

“This is an exciting opportunity to demonstrate the unique capabilities of our highly maneuverable Ranger spacecraft, which will expand NASA’s options for reaching dynamic and challenging … orbits,” Kerry Wisnosky, CEO of Quantum Space, added in the release.

The nine studies are scheduled to be completed by mid-September.

NASA said it will use the studies’ findings “to inform mission design, planning, and commercial launch acquisition strategies for risk-tolerant payloads, with a possibility of expanding delivery services to larger-sized payloads and to less risk-tolerant missions in the future.”

ExxonMobil may pause plans for $7 billion Baytown hydrogen plant

Change of Plans

Spring-based ExxonMobil, the country’s largest oil and gas company, might delay or cancel what would be the world’s largest low-carbon hydrogen plant due to a significant change in federal law. The project carries a $7 billion price tag.

The Biden-era Inflation Reduction Act created a new 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s "One Big Beautiful Bill Act," the window for starting construction of low-carbon hydrogen projects that qualify for the tax credit has narrowed. The Inflation Reduction Act mandated that construction start by 2033. But the Big Beautiful Bill switched the construction start time to early 2028.

“While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” ExxonMobil Chairman and CEO Darren Woods said during the company’s recent second-quarter earnings call.

Woods said ExxonMobil is working to determine whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit will help pave the way for a “broader” low-carbon hydrogen market.

“If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods said.

“We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

Woods said ExxonMobil is trying to nail down sales contracts connected to the project, including exports of ammonia to Asia and Europe and sales of hydrogen in the U.S.

ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company has said the plant is slated to go online in 2027 and 2028.

As it stands now, ExxonMobil wants the Baytown plant to produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The company has said the project could store as much as 10 million metric tons of CO2 per year.

---

This article originally appeared on EnergyCapitalHTX.com.