How this UH pharmacologist tapped into humanities to improve health outcomes in her study. Graphic by Miguel Tovar/University of Houston

The humanities, encompassing language, literature, arts, and history, are often seen as separate from scientific research in universities.

However, they hold the potential to contribute to improved health outcomes by fostering empathy, understanding of cultural context, and enhancing human connections. Meghana Trivedi, an associate professor of Pharmacy Practice and Translational Research at the University of Houston, has embarked on a research project to explore this transformative potential.

Using media to improve medicine adherence

Trivedi, a pharmacologist focusing on developing new drugs for breast cancer treatment, noticed a common issue among breast cancer patients — non-adherence to medication instructions, particularly among minority patients with low socioeconomic status. This non-adherence increases the risk of recurrence and poses a significant national problem.

Trivedi sought to understand the reasons behind this non-adherence and discovered that traditional educational pamphlets were ineffective in improving medication adherence. Instead, she decided to explore a theater-based approach.

Trivedi’s research involves developing a culturally sensitive educational video for breast cancer patients, written by a local African American playwright in collaboration with the clinical team and input from African American survivors. Additionally, her team is testing the effectiveness of motivational interviewing, where pharmacy students personally engage with patients to address barriers to adherence and suggest solutions. Trivedi believes that these approaches, rooted in the humanities, will demonstrate their impact on health outcomes.

The role of humanities in team science

Recognizing the value of interdisciplinary collaboration, Trivedi incorporated the arts and humanities into her research by partnering with professors from the School of Theatre and Dance and the Valenti School of Communication at UH. This collaboration has highlighted the importance of incorporating arts into STEM fields, leading Trivedi to advocate for STEAM (Science, Technology, Engineering, Arts, and Mathematics).

Trivedi emphasizes that effective team science requires shared interest in the project, transparency, and honesty among team members. “We are a very efficient team working to achieve a common and important goal – to improve treatment outcomes and survival in patients.”

The Big Idea

Trivedi’s research underscores the role of social and cultural factors in medication adherence among specific patient groups. By posing her research question outside of her discipline, Trivedi engaged new collaborators who became invested in — and contributed directly to — positive health outcomes. This interdisciplinary approach, combining the insights of the humanities and the collaborative nature of team science, facilitated the development of novel solutions to enhance medication adherence.

------

This article originally appeared on the University of Houston's The Big Idea. Cory Thaxton, the author of this piece, is the communications coordinator for The Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”