Houston-area researchers are innovating health and wellness solutions every day — even focusing on non-pandemic-related issues. Photo via Getty Images

Researchers across the world are coming up with innovative breakthroughs regarding the coronavirus, but Houston research institutions are also making health and wellness discoveries outside of COVID-19.

Here are three research innovations from Houston scientists from a new cardiac medical device to artificial intelligence-driven predictive technology for cirrhosis patients.

University of Houston's new implantable cardiac device

A UH researcher has designed a flexible device that can collect key information on the human heart. Photo via UH.edu

Cardiac implants and devices like pacemakers are either made with rigid materials that don't do the moving, beating heart any favors or the devices are made with soft materials but sacrifice the quality of information collected.

Researchers led by Cunjiang Yu, a University of Houston professor of mechanical engineering, have reported in Nature Electronics a new rubbery patch designed to collect electrophysiological activity, temperature, heartbeat and other indicators, while being flexible against the heart.

Yu, who is also a principal investigator with the Texas Center for Superconductivity at UH, is the author of the paper says it's the first time a device has both been flexible and accurate. The device, which generates energy from heart beats and doesn't need an external power source, can both collect information from multiple locations on the heart — also known as spatiotemporal mapping — but it can also offer therapeutic benefits such as electrical pacing and thermal ablation, according to the researchers.

"Unlike bioelectronics primarily based on rigid materials with mechanical structures that are stretchable on the macroscopic level, constructing bioelectronics out of materials with moduli matching those of the biological tissues suggests a promising route towards next-generational bioelectronics and biosensors that do not have a hard–soft interface for the heart and other organs," the researchers wrote. "Our rubbery epicardial patch is capable of multiplexed ECG mapping, strain and temperature sensing, electrical pacing, thermal ablation and energy harvesting functions."

Yu has worked on the development of fully rubbery electronics with sensing and other biological capabilities, including for use in robotic hands, skins and other devices.

Baylor College of Medicine's new tool to predict outcomes of cirrhosis

A new statistical model created from artificial intelligence can more accurately predict cirrhosis outcomes. Image via bcm.edu

Currently, the standard of care for cirrhosis patients is limited because physicians can't accurately predict long-term outcomes. But this might be changing thanks to researchers at Baylor College of Medicine, the Michael E. DeBakey Veteran's Affairs Medical Center, and the Center for Innovations in Quality, Effectiveness and Safety (IQuESt).

According to their study are published in JAMA Network Open, the researchers developed a model using a blend of artificial intelligence and traditional statistical methods to produce a score better predicting mortality in cirrhosis.

"When we see patients in the clinic we want to guide them about their long-term outcomes. We wanted to create a tool using machine learning and artificial intelligence to improve the accuracy of prognosis, while maintaining ease of use in the clinic," says Dr. Fasiha Kanwal, the author of the study and professor of medicine and section chief of gastroenterology at Baylor, in a news release.

The scientists used data collected from patients at 130 hospitals and clinics — such as demographics, comorbidities, underlying risk factors and severity of liver disease — as well as comprehensive laboratory tests and medication data to create three different statistical models to predict risk of mortality.

"Machine learning and artificial intelligence is important. It did help us find the right risk factors to use, but we didn't need to use very complex models to get there. We were able to create the CiMM score that will work easier in the clinic and is more predictive of mortality than the existing method," says Kanwal.

The Cirrhosis Mortality Model (CiMM) performed the best and most accurately and was more predictive than the current prognostic model, known as the Model for End Stage Liver Disease with sodium (MELD-Na).

"This tool could make a big difference in providing patient-centered care. The CiMM score could be reassessed every time a patient comes into the clinic," Kanwal said. "Previously, we were unable to predict anything long term. But the CiMM score could give us an idea of how to manage disease for one, two and three years out."

UTHealth's $11 million grant to study multi-drug resistant infection factors

A local multi-institutional research team has received millions to study drug resistance. Photo via Getty Images

A program at the University of Texas Health Science Center at Houston has received an $11 million grant from the National Institute of Allergy and Infectious Diseases to conduct this five-year study on why some critically ill patients develop multidrug-resistant infections.

The Dynamics of Colonization and Infection by Multidrug-Resistant Pathogens in Immunocompromised and Critically Ill Patients will enroll patients at both Memorial Hermann Hospital-Texas Medical Center and The University of Texas MD Anderson Cancer Center.

According to a news release, the research team will seek to explain the microbial, clinical, and antimicrobial resistance factors of three major multidrug-resistant pathogens: Vancomycin-resistant enterococci, Enterobacterales producing extended spectrum β-lactamases/carbapenemases, and Clostridioides difficile. Note: all three pathogens are resistant to antimicrobial treatment such as antibiotics.

"We want to learn more about how these three classes of organisms colonize the gastrointestinal tract of critically ill patients and, eventually, cause infections in these patient populations," says Dr. Cesar A. Arias, the study's principal investigator and professor of infectious disease at McGovern Medical School at UTHealth.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston family's $20M donation drives neurodegeneration research

big impact

Neurodegeneration is one of the cruelest ways to age, but one Houston family is sharing its wealth to invigorate research with the goal of eradicating diseases like Alzheimer’s.

This month, Laurence Belfer announced that his family, led by oil tycoon Robert Belfer, had donated an additional $20 million to the Belfer Neurodegeneration Consortium, a multi-institutional initiative that targets the study and treatment of Alzheimer’s disease.

This latest sum brings the family’s donations to BNDC to $53.5 million over a little more than a decade. The Belfer family’s recent donation will be matched by institutional philanthropic efforts, meaning BNDC will actually be $40 million richer.

BNDC was formed in 2012 to help scientists gain stronger awareness of neurodegenerative disease biology and its potential treatments. It incorporates not only The University of Texas MD Anderson Cancer Center, but also Baylor College of Medicine, Massachusetts Institute of Technology (MIT) and Icahn School of Medicine at Mount Sinai.

It is the BNDC’s lofty objective to develop five new drugs for Alzheimer’s disease and related disorders over the next 10 years, with two treatments to demonstrate clinical efficacy.

“Our goal is ambitious, but having access to the vast clinical trial expertise at MD Anderson ensures our therapeutics can improve the lives of patients everywhere,” BNDC Executive Director Jim Ray says in a press release. “The key elements for success are in place: a powerful research model, a winning collaborative team and a robust translational pipeline, all in the right place at the right time.”

It may seem out of place that this research is happening at MD Anderson, but scientists are delving into the intersection between cancer and neurological disease through the hospital’s Cancer Neuroscience Program.

“Since the consortium was formed, we have made tremendous progress in our understanding of the molecular and genetic basis of neurodegenerative diseases and in translating those findings into effective targeted drugs and diagnostics for patients,” Ray continues. “Yet, we still have more work to do. Alzheimer's disease is already the most expensive disease in the United States. As our population continues to age, addressing quality-of-life issues and other challenges of treating and living with age-associated diseases must become a priority.”

And for the magnanimous Belfer family, it already is.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a podcast with the founder of a new venture firm, a former astronaut and recent award recipient, and a health care innovator with fresh funding.

Zach Ellis, founder and managing partner of South Loop Ventures

Zach Ellis explains on the Houston Innovators Podcast that South Loop Ventures plans to invest in promising companies from across the country and bring them into Houston's ecosystem to grow and scale. Photo via LinkedIn

Houston has a lot of the right ingredients for commercialization and scaling up companies, so when Zach Ellis moved to town to stand up a venture capital firm that made investments in diverse founders, he decided to go about it in an innovative way.

South Loop Ventures, which Ellis launched two years ago, invests in pre-seed and seed-stage startups across health care, climatetech, aerospace, sports, and fintech. While the first handful of investments, which have already been made, are into Houston-based companies, Ellis explains on the Houston Innovators Podcast that the firm plans to invest in promising companies from across the country and bring them into Houston's ecosystem to grow and scale.

"Any investor wants to feel like they are looking at the best possible investment opportunities in which to deploy capital," Ellis says on the show. "So that's reason No. 1 to cast your net as widely as possible.

"At the same time, you want to give any investment that you make greatest chances of success," he continues. "The biggest factor of success outside of the team and the capital you give them, is the customers that they can call upon. In bringing targeted companies to Houston or connecting them with Houston, you introduce the opportunity for them to achieve rapid scale and work with world-class partners very efficiently." Read more.


Toby R. Hamilton, founder and CEO of Hamilton Health Box

Dr. Toby Hamilton has secured $10 million to grow his company. Photo via tmc.edu

A Houston company that is working on a value-based model for primary care has fresh funding to support its mission.

Hamilton Health Box announced the completion of a $10 million series A funding round led by 1588 Ventures with participation from Memorial Hermann Health System, Impact Ventures by Johnson & Johnson Foundation, Texas Medical Center Venture Fund, and the Sullivan Brothers.

The company, founded in 2019 by Dr. Toby R. Hamilton, will use the funding to fuel its expansion into rural areas to help assist those living in Health Professional Shortage Areas, or HPSAs. Read more.

Ellen Ochoa, former astronaut and center director at the NASA's Johnson Space Center

Ellen Ochoa was recognized for her leadership at NASA Johnson and for being the first Hispanic woman in space. Photo via NASA

Two astronauts recently received Presidential Medals of Freedom from President Joe Biden for their leadership in space.

Ellen Ochoa, the former center director and astronaut at the NASA's Johnson Space Center in Houston, and Jane Rigby, senior project scientist for NASA’s James Webb Space Telescope, were honored at the White House on May 3.

Ochoa spent 30 years with NASA, which included being the 11th director of JSC, deputy center director of JSC, and director of Flight Crew Operations. She served on the nine-day STS-56 mission aboard the space shuttle Discovery in 1993, and became the first Hispanic woman in space. She flew four more times to space with STS-66, STS-96, STS-110, and more.

“I’m so grateful for all my amazing NASA colleagues who shared my career journey with me,” Ochoa says in a NASA news release. Read more.

Houston health care institutions receive $22M to attract top recruits

coming to Hou

Houston’s Baylor College of Medicine has received a total of $12 million in grants from the Cancer Prevention & Research Institute of Texas to attract two prominent researchers.

The two grants, which are $6 million each, are earmarked for recruitment of Thomas Milner and Radek Skoda. The Cancer Prevention & Research Institute of Texas (CPRIT) announced the grants May 14.

Milner, an expert in photomedicine for surgery and diagnostics, is a professor of surgery and biomedical engineering at the Beckman Laser Institute & Medical Clinic at the University of California, Irvine and the university’s Chao Family Comprehensive Cancer Center

In 2013, Milner was named Inventor of the Year by the University of Texas at Austin. At the time, he was a professor of biomedical engineering at UT. One of his major achievements is co-development of the MasSpec Pen, a handheld device that identifies cancerous tissue within 10 seconds during surgical procedures.

Skoda is a professor of molecular medicine in the Department of Biomedicine at the University of Basel and the University Hospital Basel, both in Switzerland. He specializes in developing treatments for myeloproliferative neoplasms, which are a group of blood diseases including leukemia.

Other recruitment grants provided by the institute to Houston-area organizations are:

  • $4 million for recruitment of Susan Bullman to the University of Texas M.D. Anderson Cancer Center. She was an assistant professor at Seattle’s Fred Hutchinson Cancer Center, where she studied the connection between microbes and cancer.
  • $4 million for recruitment of Oren Rom to the University of Texas M.D. Anderson Cancer Center. Rom is an assistant professor of pathology and translational pathobiology at Louisiana State University Shreveport.
  • Nearly $2 million for recruitment of Lauren Hagler to conduct RNA cancer biology at Texas A&M University. She is a postdoctoral scholar in biochemistry at Stanford University.

The institute also awarded grants to five companies in the Houston area:

  • $4.7 million to 7 Hills Pharma for development of immunotherapies to treat cancer and prevent infectious diseases.
  • $4.5 million to Indapta Therapeutics for the Phase 1 trial of a cell therapy for treatment of multiple myeloma and non-Hodgkin’s lymphoma.
  • $2.75 million to Bectas Therapeutics for development of antibodies and biomarkers to overcome a type of resistance T-cell checkpoint therapy.
  • $2.69 million to MS Pen Technologies for development of technology that differentiates between normal tissue and cancerous tissue during surgery.
  • $2.58 million to Crossbridge Bio for development of an antibody-drug combination to treat certain solid tumors.