A Houston life science expert shares what she thinks Houston needs to work on to continue growing as an health care innovation ecosystem. Photo via Getty Images

Once upon a time in Houston, a promising startup, let’s call it BioMatrix, set out to revolutionize the world of biomaterials. Their groundbreaking product held immense potential, but the company faced the harsh reality of a lack of funding, resources, and talent in their local life sciences sector.

As they watched well-funded competitors in established hubs like Boston and Silicon Valley flourish, the passionate team at BioMatrix persevered, determined to overcome these challenges, and make their mark in the rapidly evolving world of MedTech and life sciences. But would they ultimately move to a richer life science hub?

Over the years, Houston has emerged as a life sciences hub, fueled by the world's largest medical center, Texas Medical Center, and an expanding network of research institutions, startups, and investors. However, despite all its potential, the city still lags other innovation hubs and isn’t included in many of the lists for top life science ecosystems. The challenges are many-fold, but some primary challenges are associated with lack of capital, trouble with talent acquisition, and weak collaboration.

Despite an uptick in venture capital funding, Houston's life sciences sector still trails the likes of Silicon Valley and Boston. Programs like CPRIT help keep companies within Texas, while Houston's unique advantages, such as lower living costs and the TMC's presence, can attract investments, but ultimately, to secure necessary capital, stakeholders must cultivate relationships with investors, government agencies, and other funding sources to infuse more money into the Houston ecosystem. And, when individuals try to do this, the rest of the ecosystem must be supportive.

Talent retention and attraction pose another challenge, as Houston competes with well-funded life science hubs offering abundant research institutions and funding opportunities. While Houston boasts numerous educational institutions producing skilled life sciences graduates, many curricula primarily prepare students for academic rather than industry careers, creating a skills and knowledge gap.

Having a lot of experience in academia doesn’t often translate well into the industry, as is demonstrated by many startup founders who struggle to understand the various stakeholder requirements in bringing a life science product to market.

To bridge this, educational institutions should incorporate more industry-oriented courses and training programs, like Rice University’s GMI Program, that emphasize practical skills and real-world applications. Collaborating with local companies for internships, co-op placements, and hands-on experiences can expose students to industry practices and foster valuable connections.

For any life science company, navigating the intricate regulatory landscape is also a challenge, as missteps can be disastrous. However, it’s even more of a challenge when you lack the fundamentals knowledge of what is required and the skills to effectively engage with industry experts in the space.

To address this, Houston must provide more opportunities for companies to learn about regulatory complexities from experts. Workshops, accelerators, or dedicated graduate and undergraduate courses focusing on regulatory compliance and best practices can facilitate knowledge and experience exchange between regulatory experts and innovators.

The initial inception of M1 MedTech was the result of a personal experience with a company who didn’t understand the fundamentals for regulatory interactions and didn’t know how to appropriately engage with consultants, resulting in time and money wasted.

Enhancing collaboration among Houston's life science stakeholders — including academia, research institutions, healthcare providers, subject matter experts, innovators, and investors — is fundamental for growth. A robust and lively professional network can stimulate innovation and help emerging companies access essential resources.

To this end, Houston should organize more industry-specific events, workshops, and conferences, connecting key life science players and showcasing the city's commitment to innovation. These events can also offer networking opportunities with industry leaders, attracting and retaining top talent. We’ve seen some of this with the Texas Life Science Forum and now with the Ion's events, but we could afford to host a lot more.

Houston's life sciences sector holds immense growth potential, but addressing funding, talent recruitment, regulatory navigation, and collaboration challenges is needed for continued success. By tackling these issues and leveraging its unique strengths, Houston can establish itself as a significant player in the global life sciences arenas. If we wait too long, we won’t be able to truly establish the Third Coast because another player will come into the mix, and we’ll lose companies like BioMatrix to their golden shores.

------

Isabella Schmitt is the director of regulatory affairs at Proxima Clinical Research and principal at M1 MedTech.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.