Paladin Drones wants eyes in the skies within 30 seconds of an emergency call. Getty Images

When 911 is called, first responders usually arrive at the scene around three or four minutes after the call's placed. But Houston-based Paladin Drones wants to have eyes on the ground ­— or eyes in the sky — within the first 30 seconds.

The company's mission is simple: to outfit public agencies and first-responders with drones that can be autonomously deployed to the site of an emergency. Equipped with thermal sensors and flying around 200 feet high, the drones can give police and firefighters near-instantaneous information on a situation underway.

At the beginning of April, Paladin Drones began working with the Memorial Villages Police Department to respond to incidents in Memorial Villages, Hunter's Creek, Piney Point Village, and Bunker Hill.

"(This is) one of the first departments in the country to be testing this technology," says Paladin Drones co-founder Divyaditya Shrivastava. "We're very limited in the area that we cover, and that's just because we're taking baby steps and going as carefully and deliberately as possible."

Paladin Drones was co-founded by Shrivastava and Trevor Pennypacker. In 2018, the company went through a three-month boot camp at Y Combinator, a California-based incubator that's churned out Dropbox, AirBNB, Instacart and more. Through Y Combinator, Paladin Drones was connected with venture capital investors in Houston.

The company's drones capture critical information, such as a vehicle's color and body type, a suspect's clothing, or the direction a suspect fled the scene. And since roughly 70 percent of 911 calls involve witnesses or passerby giving inaccurate information about the emergency's location, these drones will be able to pinpoint the exact location of an emergency, further aiding the arrival of first responders.

"We're working on tracking technology to give the drones the capability to auto-follow (suspects)," Shrivastava says.

Paladin Drones is looking to hire a handful of employees in the coming months, Shrivastava says. He declined to disclose any information on the company's funding plans, but said it's still involved with Y Combinator in California.

Shrivastava began developing Paladin Drones when he was finishing high school in Ohio. The summer before his senior year, a friend's house burned down. While nobody was injured in the fire, the home was destroyed, and Shrivastava spoke with the local firefighters. Tragically, the 911 call that alerted firefighters of the emergency was one of the 70 percent of calls that involved inaccurate location information.

"If they'd known the exact location, the house would've been saved," Shrivastava says. "A fire doubles every 30 seconds."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.