Zuri Gardens is taking shape near Hobby Airport. Courtesy rendering

What’s being promoted as the world’s first large-scale affordable housing development built using 3D technology is taking shape in Houston.

Houston-based 3D construction company HiveASMBLD has teamed up with Houston-based Cole Klein Builders and the City of Houston on the Zuri Gardens project. Located near Hobby Airport on Martindale Road, the first 3D-printed home at Zuri Gardens is set to be completed in October.

“Zuri Gardens was born from the frustration of watching hardworking families get priced out of safe, resilient housing. We knew there had to be a better way — and with this project, we’re proving that there is,” says Vanessa Cole, co-founder of Cole Klein Builders.

“By combining visionary design, advanced construction technology, and powerful partnerships, we’re building more than just homes — we’re creating a blueprint for the future of equitable homeownership in Houston and beyond.”

The development is being created for households earning up to 120 percent of the median income in the Houston metro area. For a four-member household in the Houston area, the 120 percent limit in 2025 is $121,300, as set by the U.S. Department of Housing and Urban Development (HUD).

The 13-acre Zuri Gardens development will feature 80 energy-efficient homes averaging 1,360 square feet. Prices will be in the mid to high $200s. The homes will qualify for up to $125,000 in down payment assistance from the City of Houston.

HiveASMBLD will print two different home designs, each with two-bedroom and two-and-a-half bathroom configurations, along with an office/flex space and a covered patio.

Zuri Gardens home model Houston Courtesy rendering

“The community we envision for Zuri Gardens is modern, safe, and one that residents will be proud to call home. When completed using HiveASMBLD’s innovative technology, this 3D-printed multifamily community will exemplify the future of residential affordable living,” says Timothy Lankau, founder and co-CEO of HiveASMBLD.

Developments like Zuri Gardens are popping up around the country.

“3D-printed homes are revolutionizing the construction industry by making home builds faster, cheaper, and more sustainable,” according to The Zebra, an Austin-based insurance marketplace. “In less than 24 hours, 3D printers can print the foundation and walls for a small home at a fraction of the cost of typical construction.”

U.S. News & World Report explains that unlike a traditional home, a 3D-printed home is printed in place, “just like you’d print a knickknack on your home 3D printer. Layer by layer, proprietary concrete blends are used to build the wall systems of the home in any type of design that a builder can imagine.”

Texas is home to several trailblazing 3D-printed projects.

In the U.S., the first 3D-printed home was built in 2018 in Austin, and the first 3D-printed multistory home was completed in 2023 in Harris County’s Spring Branch neighborhood. Meanwhile, the world’s largest neighborhood of 3D-printed homes is located in the Austin suburb of Georgetown.

Grand View Research predicts the global market for 3D-printed construction will approach $4.2 billion by 2030.

---

This article originally appeared on CultureMap.com.

Within the next five years, Frankel believes that the technology they are using will evolve even more, perhaps to include holographic 3D models of homes they hope to build for their clients. Getty Images

Houston home builder stays ahead of the competition by incorporating new technologies

home tech

For Frankel Building Group, the evolution of technology in the real estate and construction world was the next logical step in creating a sustainable and viable company. By incorporating technology into its client-based custom design and build firm through the use of a personal app and 3D renderings, co-president and principal Scott Frankel said Frankel Building Group is years ahead of the rest of the competition.

Frankel, who runs the company alongside his brother Kevin, described it as "a responsibility to do better and to show more."

"Our company, when I got here, was politely a little bit in the stone ages," Scott Frankel tells InnovationMap. "In order to be a customer facing business, and in order to compete in the market, we have learned to be a very technology-forward business. I would say out of every custom builder in the country, we are probably the most technology-reliant builder out there. That's a good thing."

The building group, which was started by 30 years ago by Scott and Kevin's father Jim, uses technology in every aspect of its projects.

Five to 10 years ago, builders would have to import designs into AutoCAD, a software that allows builders, engineers and architects to see their drawings in 3D form. Those AutoCAD drawings would then be printed and given to the homebuyer.

At Frankel Building Group, clients are able to login to an online portal that allows them to see every communication between them and the Frankel team, as well as building plans, updates, and digital 3D renderings of their homes. Everything from estimates to the latest updates from their assigned project manager are available to homebuyers from their phone.

"Our clients want that access," Frankel said. "If they don't get that access, they are going to be left with more questions than answers."

Frankel believes that they are only doing what the clients expect from a custom homebuilder: increasing communication through every means possible to make sure the client is satisfied with what the builder is doing.

"My brother and I are not huge technology guys," Frankel said. "We didn't come from this as framers who became custom builders. We came from a family that built custom homes and (using technology) only makes logical sense because it's something that makes it better. It's kind of like when you're banking with Chase and they came out with online banking — it just makes it better."

Within the next five years, Frankel believes that the technology they are using will evolve even more, perhaps to include holographic 3D models of homes they hope to build for their clients.

But, for now, Frankel Building Group is focused on growing their business one day at a time.

"Our focus is people in Houston who want to design and build that home for them on their property," Frankel said. "We just want to make sure we're putting the best product out there."

A 3-D printed home could be built in 48 hours for only $10,000. Photo courtesy of ICON Build

Texas startup receives $9M to build affordable 3-D printed houses

High-tech homes

In the not-too-distant future, a Texas company's 3-D printed homes will be popping up across the world for a fraction of the cost of traditional homes.

"It's our mission at ICON to reimagine the approach to homebuilding and construction and make affordable, dignified housing available to everyone throughout the world," says Jason Ballard, co-founder and CEO of Austin-based ICON LLC. "We're in the middle of a global housing crisis, and making old approaches a little better is not solving the problem."

The 3-D printed homes startup just raked in $9 million in seed funding from a host of investors, including Fort Worth-based homebuilding giant D.R. Horton; Vulcan Capital, a Seattle investment firm launched by Microsoft billionaire Paul Allen, who died October 15; Austin startup accelerator Capital Factory; Austin real estate developer Cielo Property Group; and San Francisco venture capital firm Oakhouse Partners, which is the lead investor.

At this point, ICON executives aren't sure when their homes will be popping up around town. However, Ballard tells CultureMap, "serious conversations" are underway about bringing these homes to Austin and other places around the world.

In March, ICON reaped tons of press when it unveiled a 350-square-foot 3-D home at SXSW — the first home of its kind to receive a construction permit in the U.S. At the time, ICON executives said the home — constructed of concrete and printed in less than 48 hours by 3-D printing robots — cost less than $10,000. By contrast, the median price in September 2018 of a single-family home in the Austin metro area was $302,250.

ICON's first batch of homes is planned for a project in impoverished El Salvador that's being developed in conjunction with New Story, a San Francisco nonprofit that seeks to eradicate homelessness. The first homes there are scheduled to be printed next year.

ICON is targeting a per-home cost of $4,000 in El Salvador. Relying on technology upgrades, ICON hopes to create each 3-D home in less than 24 hours.

"While prices to print homes will vary from country to country and state to state," Ballard says, "the big takeaway is that downloading and printing a home has the potential to cost half of standard construction costs."

Homes at the development in El Salvador will measure 600 to 800 square feet — around the size of a typical one-bedroom apartment. Eventually, ICON aims to print homes in the 1,500- to 2,000-square-foot range.

Among the advantages of 3-D printed homes cited by ICON are:

  • Speedy construction
  • No manual labor
  • Little generation of leftover construction materials
  • "Tremendous" design freedom

There's a positive environmental impact with this construction process as well.

"Conventional construction is slow, fragmented, wasteful, and has poor thermal properties that increase energy use, increase operating costs, and decrease comfort," Ballard says. "Also, conventional materials like drywall and particleboard are some of the least resilient materials ever invented."

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”