Dallas-Fort Worth ranks first, with Houston second. Courtesy photo

Driven by population growth, more residential rooftops are popping up across Houston and the rest of Texas than anywhere else in America.

Using data from the U.S. Census Bureau and Zillow, Construction Coverage found 65,747 new residential units were authorized in greater Houston in 2024. That figure landed Houston in second place among major metro areas for the total number of housing permits, including those for single-family homes, apartments, and condos.

Just ahead of Houston was the Dallas-Fort Worth Metroplex, which took first place with 71,788 residential permits approved in 2024. In third place was the country’s largest metro, New York City (57,929 permits).Elsewhere in Texas, the Austin metro ranked sixth (32,294 permits), and the San Antonio metro ranked 20th (14,857 permits).

Construction Coverage also sorted major metro areas based on the number of new housing units authorized per 1,000 existing homes in 2024. Raleigh, North Carolina, held the No. 1 spot (28.8 permits per 1,000 existing homes), followed by Austin at No. 2 (28.6), DFW at No. 3 (22.2), Houston at No. 4 (21.6), and San Antonio at No. 13 (13.6).

A Newsweek analysis of Census Bureau data shows building permits for 225,756 new residential units were approved in 2024 in Texas — a trend fueled largely by activity in DFW, Houston, Austin, and San Antonio. That put Texas atop the list of states building the most residential units for the year.

Through the first eight months of last year, 145,901 permits for new residential units were approved in Texas, according to Census Bureau data. That’s nearly 80,000 permits shy of the 2024 total.

Among the states, Construction Coverage ranks Texas sixth for the number of residential building permits approved in 2024 per 1,000 existing homes (17.9).

Extra housing is being built in Texas to meet demand spurred by population growth. From April 2020 to July 2024, the state’s population increased 7.3 percent, the Census Bureau says.

While builders are busy constructing new housing in Texas, they’re not necessarily profiting a lot from homebuilding activity.

“Market conditions remain challenging, with two-thirds of builders reporting they are offering incentives to move buyers off the fence,” North Carolina homebuilder Buddy Hughes, chairman of the National Association of Home Builders, said in a December news release. “Meanwhile, builders are contending with rising material and labor prices, as tariffs are having serious repercussions on construction costs.”

Zuri Gardens is taking shape near Hobby Airport. Courtesy rendering

First large-scale affordable housing project of 3D-printed homes rises in Houston

Building Blocks

What’s being promoted as the world’s first large-scale affordable housing development built using 3D technology is taking shape in Houston.

Houston-based 3D construction company HiveASMBLD has teamed up with Houston-based Cole Klein Builders and the City of Houston on the Zuri Gardens project. Located near Hobby Airport on Martindale Road, the first 3D-printed home at Zuri Gardens is set to be completed in October.

“Zuri Gardens was born from the frustration of watching hardworking families get priced out of safe, resilient housing. We knew there had to be a better way — and with this project, we’re proving that there is,” says Vanessa Cole, co-founder of Cole Klein Builders.

“By combining visionary design, advanced construction technology, and powerful partnerships, we’re building more than just homes — we’re creating a blueprint for the future of equitable homeownership in Houston and beyond.”

The development is being created for households earning up to 120 percent of the median income in the Houston metro area. For a four-member household in the Houston area, the 120 percent limit in 2025 is $121,300, as set by the U.S. Department of Housing and Urban Development (HUD).

The 13-acre Zuri Gardens development will feature 80 energy-efficient homes averaging 1,360 square feet. Prices will be in the mid to high $200s. The homes will qualify for up to $125,000 in down payment assistance from the City of Houston.

HiveASMBLD will print two different home designs, each with two-bedroom and two-and-a-half bathroom configurations, along with an office/flex space and a covered patio.

Zuri Gardens home model Houston Courtesy rendering

“The community we envision for Zuri Gardens is modern, safe, and one that residents will be proud to call home. When completed using HiveASMBLD’s innovative technology, this 3D-printed multifamily community will exemplify the future of residential affordable living,” says Timothy Lankau, founder and co-CEO of HiveASMBLD.

Developments like Zuri Gardens are popping up around the country.

“3D-printed homes are revolutionizing the construction industry by making home builds faster, cheaper, and more sustainable,” according to The Zebra, an Austin-based insurance marketplace. “In less than 24 hours, 3D printers can print the foundation and walls for a small home at a fraction of the cost of typical construction.”

U.S. News & World Report explains that unlike a traditional home, a 3D-printed home is printed in place, “just like you’d print a knickknack on your home 3D printer. Layer by layer, proprietary concrete blends are used to build the wall systems of the home in any type of design that a builder can imagine.”

Texas is home to several trailblazing 3D-printed projects.

In the U.S., the first 3D-printed home was built in 2018 in Austin, and the first 3D-printed multistory home was completed in 2023 in Harris County’s Spring Branch neighborhood. Meanwhile, the world’s largest neighborhood of 3D-printed homes is located in the Austin suburb of Georgetown.

Grand View Research predicts the global market for 3D-printed construction will approach $4.2 billion by 2030.

---

This article originally appeared on CultureMap.com.

Within the next five years, Frankel believes that the technology they are using will evolve even more, perhaps to include holographic 3D models of homes they hope to build for their clients. Getty Images

Houston home builder stays ahead of the competition by incorporating new technologies

home tech

For Frankel Building Group, the evolution of technology in the real estate and construction world was the next logical step in creating a sustainable and viable company. By incorporating technology into its client-based custom design and build firm through the use of a personal app and 3D renderings, co-president and principal Scott Frankel said Frankel Building Group is years ahead of the rest of the competition.

Frankel, who runs the company alongside his brother Kevin, described it as "a responsibility to do better and to show more."

"Our company, when I got here, was politely a little bit in the stone ages," Scott Frankel tells InnovationMap. "In order to be a customer facing business, and in order to compete in the market, we have learned to be a very technology-forward business. I would say out of every custom builder in the country, we are probably the most technology-reliant builder out there. That's a good thing."

The building group, which was started by 30 years ago by Scott and Kevin's father Jim, uses technology in every aspect of its projects.

Five to 10 years ago, builders would have to import designs into AutoCAD, a software that allows builders, engineers and architects to see their drawings in 3D form. Those AutoCAD drawings would then be printed and given to the homebuyer.

At Frankel Building Group, clients are able to login to an online portal that allows them to see every communication between them and the Frankel team, as well as building plans, updates, and digital 3D renderings of their homes. Everything from estimates to the latest updates from their assigned project manager are available to homebuyers from their phone.

"Our clients want that access," Frankel said. "If they don't get that access, they are going to be left with more questions than answers."

Frankel believes that they are only doing what the clients expect from a custom homebuilder: increasing communication through every means possible to make sure the client is satisfied with what the builder is doing.

"My brother and I are not huge technology guys," Frankel said. "We didn't come from this as framers who became custom builders. We came from a family that built custom homes and (using technology) only makes logical sense because it's something that makes it better. It's kind of like when you're banking with Chase and they came out with online banking — it just makes it better."

Within the next five years, Frankel believes that the technology they are using will evolve even more, perhaps to include holographic 3D models of homes they hope to build for their clients.

But, for now, Frankel Building Group is focused on growing their business one day at a time.

"Our focus is people in Houston who want to design and build that home for them on their property," Frankel said. "We just want to make sure we're putting the best product out there."

A 3-D printed home could be built in 48 hours for only $10,000. Photo courtesy of ICON Build

Texas startup receives $9M to build affordable 3-D printed houses

High-tech homes

In the not-too-distant future, a Texas company's 3-D printed homes will be popping up across the world for a fraction of the cost of traditional homes.

"It's our mission at ICON to reimagine the approach to homebuilding and construction and make affordable, dignified housing available to everyone throughout the world," says Jason Ballard, co-founder and CEO of Austin-based ICON LLC. "We're in the middle of a global housing crisis, and making old approaches a little better is not solving the problem."

The 3-D printed homes startup just raked in $9 million in seed funding from a host of investors, including Fort Worth-based homebuilding giant D.R. Horton; Vulcan Capital, a Seattle investment firm launched by Microsoft billionaire Paul Allen, who died October 15; Austin startup accelerator Capital Factory; Austin real estate developer Cielo Property Group; and San Francisco venture capital firm Oakhouse Partners, which is the lead investor.

At this point, ICON executives aren't sure when their homes will be popping up around town. However, Ballard tells CultureMap, "serious conversations" are underway about bringing these homes to Austin and other places around the world.

In March, ICON reaped tons of press when it unveiled a 350-square-foot 3-D home at SXSW — the first home of its kind to receive a construction permit in the U.S. At the time, ICON executives said the home — constructed of concrete and printed in less than 48 hours by 3-D printing robots — cost less than $10,000. By contrast, the median price in September 2018 of a single-family home in the Austin metro area was $302,250.

ICON's first batch of homes is planned for a project in impoverished El Salvador that's being developed in conjunction with New Story, a San Francisco nonprofit that seeks to eradicate homelessness. The first homes there are scheduled to be printed next year.

ICON is targeting a per-home cost of $4,000 in El Salvador. Relying on technology upgrades, ICON hopes to create each 3-D home in less than 24 hours.

"While prices to print homes will vary from country to country and state to state," Ballard says, "the big takeaway is that downloading and printing a home has the potential to cost half of standard construction costs."

Homes at the development in El Salvador will measure 600 to 800 square feet — around the size of a typical one-bedroom apartment. Eventually, ICON aims to print homes in the 1,500- to 2,000-square-foot range.

Among the advantages of 3-D printed homes cited by ICON are:

  • Speedy construction
  • No manual labor
  • Little generation of leftover construction materials
  • "Tremendous" design freedom

There's a positive environmental impact with this construction process as well.

"Conventional construction is slow, fragmented, wasteful, and has poor thermal properties that increase energy use, increase operating costs, and decrease comfort," Ballard says. "Also, conventional materials like drywall and particleboard are some of the least resilient materials ever invented."

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.