HIVE 3D is bringing science fiction to reality with this Texas project. Photo courtesy of HIVE 3D

While it may be true that the mother of invention is necessity, in today’s startup market, a more important factor is disruption. That’s where HIVE 3D, a Texas-based leader in constructing eco-friendly 3D printed homes, flourishes.

HIVE 3D was already revolutionizing the home-builder industry with its lightweight gantry system and mobile robotic arm system to 3D print its homes, but it took a giant leap further with its partnership with Utah-based Eco Material Technologies, North America’s leading producer of sustainable cement alternatives.

Together, they are building the world’s first near-zero-carbon, 3D-printed homes. Using Eco Material’s cement mixture called PozzoCEM Vite, which has 92 percent lower emissions than traditional concrete that can set in just a few minutes, they are focusing on providing a sustainable, cost-efficient and affordable housing solution.

“We want our homes to last 1,000 years,” Timothy Lankau, CEO, Hive 3D CEO, tells InnovationMap. “We want archaeologists to dig them up and wonder what they were. I mean, you go to the Parthenon in Rome, and it looks similar today to how it did 2,000 years ago because the materials are so stable.

“Concrete's just a very stable material. It doesn't change over time, and that's also why building with stone and masonry is important for the future. We think it's more sustainable because it's ultimately going to be better in terms of longevity.”

Key collaboration

Eco Material Technologies and HIVE 3D’s collaborative mission began through a mutual desire to develop sustainable and eco-friendly solutions for the construction industry.

“Both companies recognized the pressing need to reduce the environmental impact of traditional construction materials and processes and the need for affordable, high-quality housing,” says Grant Quasha, CEO of Eco Material Technologies. “The partnership between the two companies began when Eco Material Technologies reached out to HIVE 3D to explore the potential of incorporating their eco-friendly materials into 3D printed construction.

“HIVE 3D recognized the opportunity to combine their expertise with sustainable material solutions. The finished product of this collaboration is an eco-friendly construction material that can be 3D printed into various structural elements like walls, floors and columns.”

Proof of concept

Photo courtesy of HIVE 3D

HIVE 3D’s first full project, a 3,150-square-foot home located in Burton, Texas, was printed with a rotating team of just four people using PozzoSlag, which replaces 50 percent of the portland cement in concrete and has been used in roads and bridges in Texas for over a decade.

The home used several innovations that hadn’t been used in a 3D printed house before, including parametric wall designs, foamcrete wall insulation, and pigmented concrete layers.

“Our product is more sustainable because it utilizes proprietary technology that allows for the use of alternative materials to replace the clinker and processes from traditional cement that contribute to its high emissions,” says Quasha. “It is estimated that the portland cement industry contributes to 8 percent of global emissions annually, but by utilizing Eco Material Technologies' cement replacement solutions ... builders can significantly decrease their carbon emissions without compromising on the product's setting time or long-term strength."

Each ton of portland cement replaced by a ton of Eco Material's products, PozzoSlag or Pozzocem, reduces emissions by close to one ton, Quasha explains.

The Calais project, located in Round Top, Texas, behind the Halles, an antique shopping and design destination, broke ground in March 2023 and will feature a collection of tiny homes known as casitas, including studio, single-bedroom and two-bedroom models, ranging from 400 to 900 square feet.

“These small homes will serve as a model for affordable and eco-friendly housing throughout the country,” says Lankau. “We plan to build them at a speed and cost point that is unprecedented in the affordable housing space.

“Ultimately, we want to build houses at a disruptive price point. We want to be vertically integrated and put our homes on the market at a significant discount to market wherever they are. And by significant, we're talking 20 or 30 percent. That's our goal.”

The right resources

Photo courtesy of HIVE 3D

HIVE 3D worked with CyBe Construction to create a mobile construction 3D printer and mixing system that allows the printing mortar to be mixed onsite, which eliminates a significant amount of labor and time, which means those savings can be passed on to the consumer.

“We worked with a company called CyBe in the Netherlands to build a robotic arm, and that arm has about an 11-foot reach, and it can go all the way in a circle around itself,” says Lankau. “So, it drives around the foundation of the house, printing sections of the house at a time. So, it'll print a section, drive to the next section, and print the next section.

“So instead of having this many different materials and these many different traits, people that do all these different things, we have a machine that just uses one material and prints the wall.”

HIVE 3D has an internal engineer that works through all of the structural issues that may come up on projects and helps them build homes with monolithic, foot-thick concrete walls with rebar and steel supported in them.

According to Lankau, their 3D printed homes are tornado-proof, hurricane-proof, pest-proof, bullet-proof and can virtually withstand anything because of the sustainable materials used to build them.

“They're everything-proof,” says Lankau. “Just because of the natural strength of the concrete and the steel we use to create them, they can support millions of pounds. So, it's actually a stronger material than a typical house. By a factor of 100. Like I said, it's bulletproof and tornado-proof. You could drive a car into it, and it would total the car. I mean, it's a very, very sturdy structure.”

A bright future

Photo courtesy of HIVE 3D

Moving forward, HIVE 3D would like to continue to innovate and advance its 3D printing technology by leaps and bounds.

“The science fiction goal here, which is maybe a five-year goal, is to be able to drive onto a site, press a button, and watch the robots work,” says Lankau. “We want to be a significant home builder. So, in five years, we want to be building a lot of houses quickly and affordably and we want to continue to automate more and more of the process.”

Right now, there is no formal process for commissioning a HIVE 3D printed home. Perspective customers are directed to the website, then put in a request to build a home, go through a screening process and if the project is a good fit, they'll put that project into their pipeline.

“We can build them quickly. It's just a matter of getting to them,” says Lankau. “We're also going to be doing some developments in Texas probably to start. We also have some international things that we'll be looking into next year. But right now, it's mostly in Texas. We'll be building some developments and putting those homes on the market. We hope to have some out this year and then a bigger chunk next year as we get more machines working. Those will be announced on our website.”

As HIVE 3D continues to find ways to scale its business model, there is a laser focus on the diminishing idea of the “American Dream,” where young families are able to purchase their first home. With the rising costs of supplies and labor, those families have been priced out of the market.

“That’s almost all we think about,” says Lankau. “Homeownership and that part of the American Dream is really struggling right now because the affordability gap between what the average person makes and what the average house on the market costs is just getting wider and wider.

According to Lankau, there are a lot of options to address the supply gap, but there aren’t an equal number of options to solve the affordability issue. Their goal is to find the best ways to deliver real cost savings over both traditional construction and other automated technologies.

“About three weeks ago, we kind of hit the inflection point in our current project where we printed a little house in three days. The cost of the house was what we wanted the cost to be, which is a disruptive amount less than what you could do traditionally or with any other construction technique. And we said, okay, now we're far enough along. We have this system. It's a scalable system. So, we're right now putting some capital together to go out and buy, build more of these machines and get out and start doing these truly affordable housing projects. Because that's where our heart is. Our heart's on the affordable side.”

HIVE 3D’s project in Burton, Texas isn’t available for sell yet, but it will be listed on Airbnb for interested customers to go and experience when it’s completed.

Additionally, the Casitas units in Round Top will be short-term rentals for festival patrons.

“We’ll go directly to market with our next projects,” says Lankau. “And then we'll sell that big house property in Burton at the end of this year.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 Houston scientists named winners of prestigious Hill Prizes 2026

prized research

Five Houston scientists were recognized for their "high-risk, high-reward ideas and innovations" by Lyda Hill Philanthropies and the Texas Academy of Medicine, Engineering, Science and Technology (TAMEST).

The 2026 Hill Prizes provide seed funding to top Texas researchers. This year's prizes were given out in seven categories, including biological sciences, engineering, medicine, physical sciences, public health and technology, and the new artificial intelligence award.

Each recipient’s institution or organization will receive $500,000 in direct funding from Dallas-based Lyda Hill Philanthropies. The organization has also committed to giving at least $1 million in discretionary research funding on an ad hoc basis for highly-ranked applicants who were not selected as recipients.

“It is with great pride that I congratulate this year’s Hill Prizes recipients. Their pioneering spirit and unwavering dedication to innovation are addressing some of the most pressing challenges of our time – from climate resilience and energy sustainability to medical breakthroughs and the future of artificial intelligence,” Lyda Hill, founder of Lyda Hill Philanthropies, said in a news release.

The 2026 Houston-area recipients include:

Biological Sciences: Susan M. Rosenberg, Baylor College of Medicine

Rosenberg and her team are developing ways to fight antibiotic resistance. The team will use the funding to screen a 14,000-compound drug library to identify additional candidates, study their mechanisms and test their ability to boost antibiotic effectiveness in animal models. The goal is to move toward clinical trials, beginning with veterans suffering from recurrent infections.

Medicine: Dr. Raghu Kalluri, The University of Texas MD Anderson Cancer Center

Kalluri is developing eye drops to treat age-related macular degeneration (AMD), the leading cause of vision loss globally. Kalluri will use the funding to accelerate studies and support testing for additional ocular conditions. He was also named to the National Academy of Inventors’ newest class of fellows last month.

Engineering: Naomi J. Halas, Rice University

Co-recipeints: Peter J. A. Nordlander and Hossein Robatjazi, Rice University

Halas and her team are working to advance light-driven technologies for sustainable ammonia synthesis. The team says it will use the funding to improve light-driven catalysts for converting nitrogen into ammonia, refine prototype reactors for practical deployment and partner with industry collaborators to advance larger-scale applications. Halas and Nordlander are co-founders of Syzygy Plasmonics, and Robatjazi serves as vice president of research for the company.

The other Texas-based recipients include:

  • Artificial Intelligence: Kristen Grauman, The University of Texas at Austin
  • Physical Sciences: Karen L. Wooley, Texas A&M University; Co-Recipient: Matthew Stone, Teysha Technologies
  • Public Health: Dr. Elizabeth C. Matsui, The University of Texas at Austin and Baylor College of Medicine
  • Technology: Kurt W. Swogger, Molecular Rebar Design LLC; Co-recipients: Clive Bosnyak, Molecular Rebar Design, and August Krupp, MR Rubber Business and Molecular Rebar Design LLC

Recipients will be recognized Feb. 2 during the TAMEST 2026 Annual Conference in San Antonio. They were determined by a committee of TAMEST members and endorsed by a committee of Texas Nobel and Breakthrough Prize Laureates and approved by the TAMEST Board of Directors.

“On behalf of TAMEST, we are honored to celebrate the 2026 Hill Prizes recipients. These outstanding innovators exemplify the excellence and ambition of Texas science and research,” Ganesh Thakur, TAMEST president and a distinguished professor at the University of Houston, added in the release. “Thanks to the visionary support of Lyda Hill Philanthropies, the Hill Prizes not only recognize transformative work but provide the resources to move bold ideas from the lab to life-changing solutions. We are proud to support their journeys and spotlight Texas as a global hub for scientific leadership.”

Investment bank opens new Houston office focused on energy sector

Investment bank Cohen & Co. Capital Markets has opened a Houston office to serve as the hub of its energy advisory business and has tapped investment banking veteran Rahul Jasuja as the office’s leader.

Jasuja joined Cohen & Co. Capital Markets, a subsidiary of financial services company Cohen & Co., as managing director, and head of energy and energy transition investment banking. Cohen’s capital markets arm closed $44 billion worth of deals last year.

Jasuja previously worked at energy-focused Houston investment bank Mast Capital Advisors, where he was managing director of investment banking. Before Mast Capital, Jasuja was director of energy investment banking in the Houston office of Wells Fargo Securities.

“Meeting rising [energy] demand will require disciplined capital allocation across traditional energy, sustainable fuels, and firm, dispatchable solutions such as nuclear and geothermal,” Jasuja said in a news release. “Houston remains the center of gravity where capital, operating expertise, and execution come together to make that transition investable.”

The Houston office will focus on four energy verticals:

  • Energy systems such as nuclear and geothermal
  • Energy supply chains
  • Energy-transition fuel and technology
  • Traditional energy
“We are making a committed investment in Houston because we believe the infrastructure powering AI, defense, and energy transition — from nuclear to rare-earth technology — represents the next secular cycle of value creation,” Jerry Serowik, head of Cohen & Co. Capital Markets, added in the release.

---

This article originally appeared on EnergyCaptialHTX.com.

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”