Nesh's digital assistant technology wants to make industry information more easily accessible for energy professionals. Photo courtesy of Thomas Miller/Breitling Energy

When Sidd Gupta's friend lost his job and struggled to find a new position after the major oil downturn in 2014, Gupta noticed a systemic problem within the industry.

"A company rejected him because he was unfamiliar with the software they used in their operations," Gupta explains. "In our industry, companies will judge a potential hire's technical capabilities based on which software they know how to use rather than how good they would be at the job."

While software requirements for oilfield jobs are common, it made Gupta consider how we can make complex data and knowledge more accessible.

Gupta saw something else brewing in the energy industry that also piqued his interest.

"There was entrepreneurship in the oil and gas space and an interest in data science during the oil downturn. We saw startups created in Austin then Houston. There was an infectious entrepreneurial energy at that time," he says.

Last year, he took the entrepreneurial leap, quit his job and founded Nesh, a smart assistant like Alexa or Siri, but specifically for oil and gas companies. Nesh sources information from public data, vendor sources, technical papers, journal articles, news feeds and more to give answers to complex, technical questions related to energy.

Nesh explained
Because this tool is meant for businesses and not personal use, the software must be trustworthy, Gupta says, and he asked himself what he needs to do to make an engineer or a CEO of an energy company believe Nesh's response.

The answer: transparency. With Nesh, users can see how the smart assistant came to its answer. The software shows the data and workflow behind the answer as part of the user interface.

And Nesh learns from its users too. If an unfamiliar question is posed to Nesh, users can add new training phrases to teach Nesh what to do next time the question is posed.

"We created Nesh as something super-simple to use," Gupta says. "There's no learning curve, no technical knowledge required, you just need to speak plain English."

Gupta, who was raised in India, came to the United States to pursue his master's degree in petroleum engineering at the University of Texas at Austin. After working in oil and gas for over a decade, he started Nesh last year with co-founder and CTO Seth Anderson.

Gearing up for the future
This year, Nesh is in the process of fundraising, and, with the new funds, he plans to expand his workforce, which is currently five employees (including Gupta himself) based in Houston. Due to its size, Nesh currently can run only one pilot program at a time. With more employees, Nesh will be able to scale up its pilot programs and run multiple pilots in parallel. The larger user pool for these pilots will give Gupta and his team better insights into Nesh and allow them to continue refining the tool.

Right now, Gupta wants to commercialize in those operations where Nesh is already running pilot programs. He says he hopes for Nesh to have both internal and external growth, with the next surge of hiring and an expanded user pool for the product.

He plans to make Nesh available as a commercial product in fall of this year with a target market of small to mid-sized oil and gas companies.

Gupta says Nesh is different from anything in the market.

"With enterprise software in general, it can be very hard to get a demo version of software without talking to a sales representative—something that people dislike," he says. "I want to bring the B2C aspect of trying a software to the B2B world."

The business model goal for Nesh is for potential clients to be able to test the software themselves, Gupta says, and then contact the company if they're interested.

"I want transparent pricing to be visible on our website," he says. "I want potential customers to be able to experience the demo just by giving their information."

As Gupta sees it, one of the main advantages to being in Houston is the important support networks as well as the potential customer base. He's grateful to local organizations such as Station Houston and Capital Factory for connecting him with many resources.

"I'm seeing a lot of innovation here in Houston," Gupta says. "There's a lot of oil and gas companies, so as we begin looking for potential customers, that's a very important advantage of being here."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”

Axiom Space wins NASA contract for fifth private mission, lands $350M in financing

ready for takeoff

Editor's note: This story has been updated to include information about Axiom's recent funding.

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Axiom also announced today, Feb. 12, that it has secured $350 million in a financing round led by Type One Ventures and Qatar Investment Authority.

The company shared in a news release that the funding will support the continued development of its commercial space station, known as Axiom Station, and the production of its Axiom Extravehicular Mobility Unit (AxEMU) under its NASA spacesuit contract.

NASA awarded Axiom a contract in January 2020 to create Axiom Station. The project is currently underway.

"Axiom Space isn’t just building hardware, it’s building the backbone of humanity’s next era in orbit," Tarek Waked, Founding General Partner at Type One Ventures, said in a news release. "Their rare combination of execution, government trust, and global partnerships positions them as the clear successor-architect for life after the ISS. This is how the United States continues to lead in space.”

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.