Nesh's digital assistant technology wants to make industry information more easily accessible for energy professionals. Photo courtesy of Thomas Miller/Breitling Energy

When Sidd Gupta's friend lost his job and struggled to find a new position after the major oil downturn in 2014, Gupta noticed a systemic problem within the industry.

"A company rejected him because he was unfamiliar with the software they used in their operations," Gupta explains. "In our industry, companies will judge a potential hire's technical capabilities based on which software they know how to use rather than how good they would be at the job."

While software requirements for oilfield jobs are common, it made Gupta consider how we can make complex data and knowledge more accessible.

Gupta saw something else brewing in the energy industry that also piqued his interest.

"There was entrepreneurship in the oil and gas space and an interest in data science during the oil downturn. We saw startups created in Austin then Houston. There was an infectious entrepreneurial energy at that time," he says.

Last year, he took the entrepreneurial leap, quit his job and founded Nesh, a smart assistant like Alexa or Siri, but specifically for oil and gas companies. Nesh sources information from public data, vendor sources, technical papers, journal articles, news feeds and more to give answers to complex, technical questions related to energy.

Nesh explained
Because this tool is meant for businesses and not personal use, the software must be trustworthy, Gupta says, and he asked himself what he needs to do to make an engineer or a CEO of an energy company believe Nesh's response.

The answer: transparency. With Nesh, users can see how the smart assistant came to its answer. The software shows the data and workflow behind the answer as part of the user interface.

And Nesh learns from its users too. If an unfamiliar question is posed to Nesh, users can add new training phrases to teach Nesh what to do next time the question is posed.

"We created Nesh as something super-simple to use," Gupta says. "There's no learning curve, no technical knowledge required, you just need to speak plain English."

Gupta, who was raised in India, came to the United States to pursue his master's degree in petroleum engineering at the University of Texas at Austin. After working in oil and gas for over a decade, he started Nesh last year with co-founder and CTO Seth Anderson.

Gearing up for the future
This year, Nesh is in the process of fundraising, and, with the new funds, he plans to expand his workforce, which is currently five employees (including Gupta himself) based in Houston. Due to its size, Nesh currently can run only one pilot program at a time. With more employees, Nesh will be able to scale up its pilot programs and run multiple pilots in parallel. The larger user pool for these pilots will give Gupta and his team better insights into Nesh and allow them to continue refining the tool.

Right now, Gupta wants to commercialize in those operations where Nesh is already running pilot programs. He says he hopes for Nesh to have both internal and external growth, with the next surge of hiring and an expanded user pool for the product.

He plans to make Nesh available as a commercial product in fall of this year with a target market of small to mid-sized oil and gas companies.

Gupta says Nesh is different from anything in the market.

"With enterprise software in general, it can be very hard to get a demo version of software without talking to a sales representative—something that people dislike," he says. "I want to bring the B2C aspect of trying a software to the B2B world."

The business model goal for Nesh is for potential clients to be able to test the software themselves, Gupta says, and then contact the company if they're interested.

"I want transparent pricing to be visible on our website," he says. "I want potential customers to be able to experience the demo just by giving their information."

As Gupta sees it, one of the main advantages to being in Houston is the important support networks as well as the potential customer base. He's grateful to local organizations such as Station Houston and Capital Factory for connecting him with many resources.

"I'm seeing a lot of innovation here in Houston," Gupta says. "There's a lot of oil and gas companies, so as we begin looking for potential customers, that's a very important advantage of being here."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 Rice University-founded startups named finalists ahead of prestigious pitch competition

student founders

Five student-founded startups have been named finalists for Rice University's prestigious pitch competition, hosted by Rice University’s Liu Idea Lab for Innovation and Entrepreneurship later this month

The teams will compete for a share of $100,000 in equity-free funding at the H. Albert Napier Rice Launch Challenge (NRLC), a venture competition that features Rice University's top student-founded startups. The competition is open to undergraduate, graduate, and MBA students at Rice.

Finalists will pitch their five-minute pitch before the Rice entrepreneurship community, followed by a Q&A from a panel of judges, at Rice Memorial Center Tuesday, April 22.

The first-place team will receive $50,000 in equity-free funding, with other prizes and awards ranging from $25,000 to $1,000. Apart from first-, second- and third-place prizes, NRLC will also name winners in categories like the Outstanding Achievement in Artificial Intelligence Prize, the Outstanding Achievement in Climate Solutions Prize, and the Audience Choice Award.

Here are the five startups founded by Rice students are heading to the finals.

Haast Autonomous

Haast Autonomous is building unmanned, long-range VTOL aircraft with cold storage to revolutionize organ transport—delivering life-saving medical supplies roof-to-roof faster, safer, and more efficiently than current systems.

Founders: Jason Chen, Ege Halac, Santiago Brent

Kinnections

Kinnections' Glove is a lightweight, wearable device that uses targeted vibrations to reduce tremors and improve motor control in Parkinson’s patients.

Founders: Emmie Casey, Tomi Kuye

Labshare

Labshare is an AI-powered web app that streamlines lab inventory and resource sharing, reducing waste and improving efficiency by connecting neighboring labs through a centralized, real-time platform.

Founders: Julian Figueroa Jr, John Tian, Mingyo Kang, Arnan Bawa, Daniel Kuo

SteerBio

SteerBio’s LymphGuide is a patented, single-surgery hydrogel solution that restores lymphatic function by promoting vessel growth and reducing rejection, offering a transformative, cost-effective treatment for lymphedema.

Founders: Mor Sela Golan, Martha Fowler, Alvaro Moreno Lozano

Veloci

Veloci Running creates innovative shoes that eliminate the trade-off between foot pain and leg tightness, empowering runners to train comfortably and reduce injury risk.

Founders: Tyler Strothman

Last year, HEXASpec took home first place for its inorganic fillers that improve heat management for the semiconductor industry. The team also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track.

Dow aims to power Texas manufacturing complex with next-gen nuclear reactors

clean energy

Dow, a major producer of chemicals and plastics, wants to use next-generation nuclear reactors for clean power and steam at a Texas manufacturing complex instead of natural gas.

Dow's subsidiary, Long Mott Energy, applied Monday to the U.S. Nuclear Regulatory Commission for a construction permit. It said the project with X-energy, an advanced nuclear reactor and fuel company, would nearly eliminate the emissions associated with power and steam generation at its plant in Seadrift, Texas, avoiding roughly 500,000 metric tons of planet-warming greenhouse gas emissions annually.

If built and operated as planned, it would be the first U.S. commercial advanced nuclear power plant for an industrial site, according to the NRC.

For many, nuclear power is emerging as an answer to meet a soaring demand for electricity nationwide, driven by the expansion of data centers and artificial intelligence, manufacturing and electrification, and to stave off the worst effects of a warming planet. However, there are safety and security concerns, the Union of Concerned Scientists cautions. The question of how to store hazardous nuclear waste in the U.S. is unresolved, too.

Dow wants four of X-energy's advanced small modular reactors, the Xe-100. Combined, those could supply up to 320 megawatts of electricity or 800 megawatts of thermal power. X-energy CEO J. Clay Sell said the project would demonstrate how new nuclear technology can meet the massive growth in electricity demand.

The Seadrift manufacturing complex, at about 4,700 acres, has eight production plants owned by Dow and one owned by Braskem. There, Dow makes plastics for a variety of uses including food and beverage packaging and wire and cable insulation, as well as glycols for antifreeze, polyester fabrics and bottles, and oxide derivatives for health and beauty products.

Edward Stones, the business vice president of energy and climate at Dow, said submitting the permit application is an important next step in expanding access to safe, clean, reliable, cost-competitive nuclear energy in the United States. The project is supported by the Department of Energy’s Advanced Reactor Demonstration Program.

The NRC expects the review to take three years or less. If a permit is issued, construction could begin at the end of this decade, so the reactors would be ready early in the 2030s, as the natural gas-fired equipment is retired.

A total of four applicants have asked the NRC for construction permits for advanced nuclear reactors. The NRC issued a permit to Abilene Christian University for a research reactor and to Kairos Power for one reactor and two reactor test versions of that company's design. It's reviewing an application by Bill Gates and his energy company, TerraPower, to build an advanced reactor in Wyoming.

X-energy is also collaborating with Amazon to bring more than 5 gigawatts of new nuclear power projects online across the United States by 2039, beginning in Washington state. Amazon and other tech giants have committed to using renewable energy to meet the surging demand from data centers and artificial intelligence and address climate change.

---

This story appeared on our sister site, EnergyCapitalHTX.com.

UH, Baylor researchers make breakthrough with new pediatric leukemia treatment device

childhood cancer

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.