AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Photo via Getty Images

The Biden-Harris administration is deploying $150 million as a part of its Cancer Moonshot initiative, and a research team led by Rice University is getting a slice of that pie.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project that is receiving up to $18 million over five years from the Advanced Research Projects Agency for Health (ARPA-H).

“Because of its low cost, high speed, and automated analysis, we believe AccessPath can revolutionize real-time surgical guidance, greatly expanding the range of hospitals able to provide accurate intraoperative tumor margin assessment and improving outcomes for all cancer surgery patients,” Richards-Kortum says in a news release.

The project is focused on two types of cancer, breast and head and neck cancer, and Ashok Veeraraghavan, chair of Rice’s Department of Electrical and Computer Engineering and a professor of electrical and computer engineering and computer science, is a co-PI and Tomasz Tkaczyk, a professor of bioengineering and electrical and computer engineering at Rice, is also a collaborator on the project.

AccessPath is addressing the challenge surgeons face of identifying the margin where tumor tissue ends and health tissue begins when removing tumors. The project not only hopes to provide a more exact solution but do so in an affordable way.

“Precise margin assessment is key to the oncologic success of any cancer operation,” adds Dr. Ana Paula Refinetti, an associate professor in the Department of Breast Surgical Oncology at The University of Texas MD Anderson Cancer Center and one of the lead surgeons PIs on the project. “The development of a new low-cost technology that enables immediate margin assessment could transform the landscape of surgical oncology — particularly in low-resource settings, reducing the number of repeat interventions, lowering cancer care costs and improving patient outcomes.”

The project optimizing margin identification with a fast-acting, high-resolution microscope, effective fluorescent stains for dying tumor margins, and artificial intelligence algorithms.

AccessPath is a collaboration between Rice and MD Anderson Cancer Center, other awardees in the grant include the University of Texas Health School of Dentistry, Duke University, Carnegie Mellon University and 3rd Stone Design.

“AccessPath is exactly the kind of life-changing research and health care innovation we are proud to produce at Rice, where we’re committed to addressing and solving the world’s most pressing medical issues,” Ramamoorthy Ramesh, Rice’s executive vice president for research, says in the release. “Partnering with MD Anderson on this vital work underscores the importance of such ongoing collaborations with our neighbors in the world’s largest medical center. I am thrilled for Rebecca and her team; it’s teamwork that makes discoveries like these possible.”

Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project. Photo by Jeff Fitlow/Rice University

Dr. William Cohn is the chief medical officer for BiVACOR, a medical device company creating the first total artificial heart. Photo via TMC

Why this Houston medical device innovator is pumped up for the first total artificial heart

HOUSTON INNOVATORS PODCAST EPISODE 248

It's hard to understate the impact Dr. William Cohn has had on cardiovascular health as a surgeon at the Texas Heart Institute or on health care innovation as the director of the Center for Device Innovation at the Texas Medical Center. However, his role as chief medical officer of BiVACOR might be his most significant contribution to health care yet.

The company's Total Artificial Heart is unlike any cardiovascular device that's existed, Cohn explains on the Houston Innovators Podcast. While most devices are used temporarily for patients awaiting a heart transplant, BiVACOR's TAH has the potential to be a permanent solution for the 200,000 patients who die of heart failure annually. Last year, only around 4,000 patients were able to receive heart transplants.

"Artificial hearts historically have had bladders that ejected and filled 144,000 times a day. They work great for temporary support, but no one is suggesting they are permanent devices," Cohn says on the show.

The difference with BiVACOR's device is it abandons the bladder approach. Cohn explains that as assist pumps evolved — something his colleague, Dr. Bud Frasier, had a huge impact on — they featured new turbine and rotor technology. Daniel Timms, BiVACOR's founder and CTO, iterated on this technology beginning when he was a postdoctoral student at Queensland University of Technology in Australia.

"BiVACOR is the first artificial heart that leverages what we learned from that whole period — it has no bladders, it has no valves. It has one moving part, and that moving part is suspended in an electromagnetic field controlled by a computer and changed thousands of times a second," Cohn says. "It will never wear out, and that's why we think it's the world's first total artificial heart."

The company is seeing momentum, celebrating its first successful human implantation last month. The device was used for eight days on a patient at Baylor St. Luke’s Medical Center before the patient received a heart transplant.

Cohn says that BiVACOR has plans to use the TAH as "bridge-to-transplant" device in several other surgeries and expects to get FDA approval for that purpose in the next three to four years before working toward clearance for total artificial heart transplants.

Cohn has worked to support medical device startups at CDI at TMC for the seven years it has existed — first under Johnson and Johnson and then under TMC when it took the program over. He describes the center and its location as the ideal place for developing the future of health care, with Houston rising up to compete with regions known for medical device success — both coasts and Minnesota.

"Being in the shadow of the largest medical center on the planet — 106,000 employees show up there every 24 hours," Cohn says, "if you want to innovate, this is the place to do it."

Dr. Toby Hamilton is a leader in Houston's health care innovation ecosystem, and he joins the Houston Innovators Podcast to discuss his latest endeavor, which is rethinking primary and preventative care. Photo via tmc.edu

Health care leader says Houston's innovation ecosystem is shifting into third gear

houston innovators podcast episode 113

It's never been a better time for health care innovation in Houston. At least, that's what Dr. Toby Hamilton as observed in his time as a health care startup founder and innovation leader in Houston.

"Houston is absolutely beginning to show up on the national radar regarding health care innovation — as we should," Hamilton says on this week's episode of the Houston Innovators Podcast. "We are shifting our innovation vehicle into third gear for the first time, and I'm excited to see what fourth gear looks like, because it's around the corner.

Hamilton started his career as a physician before founding Emerus Holdings, a micro-hospital system in the Houston area which later exited to private equity. He also founded a nonprofit focused on connecting hospital innovation leaders called the Healthcare Innovators Professional Society and led the Texas Medical Center's Biodesign program for two years.

Over the years, he says he's seen the potential develop for Houston to hold a significant role in health care innovation across the world — it's just going to take all hands on deck.

"As a community, if we can get behind that vision and be the place that tests, develops, and creates opportunities, Houston has the potential to be unlike anything in the world," he says on the show.

Hamilton hopes to contribute to that momentum and his latest endeavor is tackling a huge obstacle in health care: access. He founded Hamilton Health Box in 2019 and had a full year of operations including a pilot program before the COVID-19 shutdown.

Essentially, Hamilton's vision recreates the traditional method of providing health care access to a company's employee base. The program brings an on-site care team to the company's offices so that employee patients have immediate access to treatment and preventative care.

"Hamilton Health Box that was designed to deliver the lowest possible price of primary and preventative care," Hamilton says. "We built that to be able to take that care to the jobsite and meet the customer where they are at."

In the new year, Hamilton says he hopes to expand on this model and reach groups of people without access to this type of care — like in rural communities.

He shares more on his work and Houston as a health care innovation leader on the podcast. Listen to the full interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Here are 3 Houston innovators to know right now

Innovators to Know

Editor's note: These Houston innovators are making big strides in the fields of neurotechnology, neurodevelopmental diagnosis, and even improving the way we rest and recharge.

For our latest roundup of Innovators to Know, we meet a researcher who is working with teams in Houston and abroad to develop an innovative brain implant; a professor who has created an AI approach to diagnosis; and a local entrepreneur whose brand is poised for major expansion in the coming years.

Jacob Robinson, CEO of Motif Neurotech

Houston startup Motif Neurotech has been selected by the United Kingdom's Advanced Research + Invention Agency (ARIA) to participate in its inaugural Precision Neurotechnologies program. The program aims to develop advanced brain-interfacing technologies for cognitive and psychiatric conditions. Three Rice labs will collaborate with Motif Neurotech to develop Brain Mesh, which is a distributed network of minimally invasive implants that can stimulate neural circuits and stream neural data in real time. The project has been awarded approximately $5.9 million.

Motif Neurotech was spun out of the Rice lab of Jacob Robinson, a professor of electrical and computer engineering and bioengineering and CEO of Motif Neurotech.

Robinson will lead the system and network integration and encapsulation efforts for Mesh Points implants. According to Rice, these implants, about the size of a grain of rice, will track and modulate brain states and be embedded in the skull through relatively low-risk surgery. Learn more.

Dr. Ryan S. Dhindsa, Dhindsa Lab

Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and his team have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa says. Learn more.

Khaliah Guillory, Founder of Nap Bar

From nap research to diversity and inclusion, this entrepreneur is making Houston workers more productiveFrom opening Nap Bar and consulting corporations on diversity and inclusion to serving the city as an LGBT adviser, Khaliah Guillory is focused on productivity. Courtesy of Khaliah Guillory

Khalia Guillory launched her white-glove, eco-friendly rest sanctuary business, Nap Bar, in Houston in 2019 to offer a unique rest experience with artificial intelligence integration for working professionals, entrepreneurs and travelers who needed a place to rest, recharge and rejuvenate.

Now she is ready to take it to the next level, with a pivot to VR and plans to expand to 30 locations in three years.

Guillory says she’s now looking to scale the business by partnering with like-minded investors with experience in the wellness space. She envisions locations at national and international airports, which she says offer ripe scenarios for patrons needing to recharge. Additionally, Guillory wants to build on her initial partnership with UT Health by going onsite to curate rest experiences for patients, caregivers, faculty, staff, nurses and doctors. Colleges also offer an opportunity for growth. Learn more.

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."