PUSH Birth Partners will also soon host several support groups for pregnant people focused on improving mental health. Photo courtesy of Jacqueline McLeeland

PUSH Birth Partners, a Houston-based maternal health nonprofit, is teaming up with the Harris County Public Health Department to provide doula services for over 200 pregnant people free of cost.

Jacqueline McLeeland, CEO and founder of PUSH, says the program will begin in August and aims to improve maternal health and birth outcomes for vulnerable populations. McLeeland says the organization has built up a strong doula training program through their collective in partnership with March of Dimes and several local doula organizations.

McLeeland says PUSH aims to address poor maternal health outcomes for women of color in part by training more doulas of color who can help reduce racial disparities in care. A 2021 study by Harris County Public Health found Precinct 1, which is predominantly composed of people of color, had the highest maternal mortality rate of the county.

Through their collective, PUSH has trained two cohorts of doulas through an integrated care model, focused on providing collaborative care with medical providers in the healthcare system.

“Our programs are designed to advance health equity, we see the numbers, we see that women of color, specifically Black women in that group are disproportionately impacted,” McLeeland tells InnovationMap.

After receiving a $100,000 grant from the Episcopal Health Foundation in 2023, PUSH began their doula expansion program in Houston and they have since received an additional grant from EHF for the next fiscal year. McLeeland shares PUSH has also launched a pilot program called Blossoming Beyond Birth, sponsored by the Rockwell Fund, targeted towards improving maternal mental health through weekly support groups in Houston.

“It’s very exciting to know that we have come this far from where we started and to see how everything is coming together,” McLeeland shares.

Jacqueline McLeeland serves as chief executive and founder of non-profit PUSH Birth Partners who has trained and collaborated with a network of doulas for the partnership. Photo courtesy of Jacqueline McLeeland

For McLeeland, improving maternal health outcomes and providing support to people experiencing high-risk pregnancies are deeply personal goals. McLeeland has sickle cell anemia, a condition that can cause serious complications during pregnancy. During her first pregnancy in 2015, McLeeland was placed on bed rest two months before her due date at which point she had been working in clinical research within the pharmaceutical industry for over 12 years.

“People don’t realize the magnitude of what women go through, during pregnancy and after,” McLeeland says. “There’s a lot of emotional, psychological, and physical tolls depending on how the pregnancy and delivery went.”

After giving birth to her first child, McLeeland took maternity leave, during which she began to research maternal morbidity and mortality trends, information which she says was not widely discussed at the time.

McLeeland says entering the maternal healthcare field felt like a necessity following her second pregnancy. Several months after giving birth to her second child, McLeeland says she received a bill for a surgical procedure that was performed during her cesarean section without her or her husband’s consent. McLeeland says that was the first time she was made aware of the surgery.

“The procedure that was claimed to have been performed could have put my life in jeopardy by hemorrhaging based off of additional research I did once, I came across that information,” McLeeland explains. “These are some of the things that happen in the healthcare system that make people skeptical of trusting in the healthcare system, trusting in doctors.”

McLeeland says the key to improving maternal and birth outcomes for vulnerable populations is to encourage the partnership between doulas, community healthcare workers, and physicians and hopes to further this collaboration through future programming.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.