Panelists from the University of Houston and Houston Methodist discussed tech transfer challenges and opportunities for academic innovators. Photo courtesy

Groundbreaking and disruptive innovations across industries are coming out of research institutions, and their commercialization process is very different from other startups.

An expert panel within Technology transfer discussed some of the unique obstacles innovators face as they go from academia into the market — like patenting, funding, the valley of death, and more.

Missed the conversation? Here are eight key moments from the panel that took place at the University of Houston's Technology Bridge on Wednesday, May 19.

This event was hosted by InnovationMap and University of Houston.

“If your technology can immediately impact some industry, I think you should license out your technology. But if you think that the reward is much higher and does not yet match something in the industry, you should go the high risk, high reward path of doing it yourself. That’s a much more challenging. It takes years of work.”

— Hadi Ghasemi, co-founder of Elemental Coatings and Cullen associate professor in the department of mechanical engineering at the University of Houston, says on how tech transfer usually happens via those two pathways. Ghasemi explains that it also depends on the academic's passion for the product and interest in becoming an entrepreneur.

“There’s a mismatch in that you can have a really clinically impactful technology but still not have money to develop it into a product.” 

— Rashim Singh, co-founder of Sanarentero and a research assistant professor of pharmaceutics at the University of Houston College of Pharmacy, says on the different priorities from within academia and within the market.

“What I’ve seen is if you know you want to patent something, tell the right people early. Make sure you have the right players involved. Our tech office already has venture, Pharma, etc. partners that can help with the patent process.”

— Ginny Torno, administrative director of innovation and IT clinical systems at Houston Methodist

“You don’t need to be fully transparent about your technology. As a company, you need to have some secret sauce."

— Ghasemi says on the patent and paper publishing process. Academics are used to publishing their research, but when it comes to business, you need to hold some things close to the chest.

“One of the most important piece the UH Tech Bridge has provided is the wet lab space to develop these technologies a little further toward commercialization. … Wet lab is very precious space in Houston specifically because there isn’t much here.”

— Singh says on how important access to lab space is to the entrepreneur.

"“You’re starting to see more and more organizations that have innovation arms. ... There are a lot of focus on trying to make Houston another innovation hub, and I think there is more support now than even a few years ago.”

— Torno says on what's changed over the past few years, mentioning TMC3 and the Ion.

“Try to serve private capital as soon as possible. The grant money comes, and those are good and will help you prove out your technology. But once you have private money, it shows people care about your product.”

— Ghasemi says as a piece of advice for potential tech transfer entrepreneurs.

“The biggest gap is to arrange for funding — federal, private, etc. — to support during the valley of death.”

— Singh says on the struggle research-based startups, especially in drug discovery, faces as they fight to prove out their product and try to stay afloat financially.

This week's innovators to know roundup includes three experts within the tech transfer space in Houston. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: It's a very special edition of the Monday innovators to know series. On Wednesday, all three of today's innovators will join me and InnovationMap for a panel discussing technology transfer — the process in general, what resources are available within their institutions, IP and grant writing, and so much more. Read more about the panelists below and click here to register for the free event.

Ginny Torno, Administrative Director, Innovation and IT Clinical Systems at Houston Methodist

Image courtesy

Ginny Torno has a long career at Houston Methodist, including work within research. Now, she's leading innovation initiatives at the deployment level within the hospital's technology center. Torno can speak to both the research and the implementation done within innovation at Houston Methodist.

Hadi Ghasemi, co-founder of Elemental Coatings and Cullen associate professor in the department of mechanical engineering at the University of Houston

Image courtesy

Hadi Ghasemi is Cullen associate professor in the department of mechanical engineering at UH. His research interests are in nanotechnology, surface physics, and heat transfer.

In 2018, Ghasemi co-founded Elemental Coatings, formerly SurfEllent, an anti-icing and anti-scaling coatings that aims to make the many problems associated with ice and scale buildup a thing of the past.

Rashim Singh, co-founder of Sanarentero and a research assistant professor of pharmaceutics at the University of Houston College of Pharmacy

Image courtesy

Co-founder of Sanarentero, Rashim Singh is developing therapies for gut-related diseases and disorders. Focused on her company, Singh can speak to the drug discovery process, grant writing, and more within the pharmaceutical space.

From a new solar energy capturing and storing device to stem cell-based pacemakers, here are three game-changing technologies coming out of UH. Getty Images

3 innovative research projects coming out of the University of Houston

research roundup

Across the University of Houston campus, professors and researchers are creating solutions for various problems in several different industries.

From information technology benefiting police officers to stem cell-based pacemakers, here are three game-changing technologies coming out of UH.

A stem cell-based biological pacemaker

Photo via of UH.edu

A University of Houston associate professor of pharmacology is contributing to research that's taking stem cells found in fat and transforming them into heart cells to act as biologic pacemaker cells.

"We are reprogramming the cardiac progenitor cell and guiding it to become a conducting cell of the heart to conduct electrical current," says Bradley McConnell in a UH news release. McConnell's work can be found in the Journal of Molecular and Cellular Cardiology.

The treatment could replace the more than 600,000 electronic pacemakers implanted annually, These devices require regular doctors visits and aren't a permanent solution.

"Batteries will die. Just look at your smartphone," says McConnell. "This biologic pacemaker is better able to adapt to the body and would not have to be maintained by a physician. It is not a foreign object. It would be able to grow with the body and become much more responsive to what the body is doing."

Suchi Raghunathan, doctoral student in the UH Department of Pharmacological and Pharmaceutical Sciences in the College of Pharmacy, is the paper's first author, and Robert J. Schwartz, Hugh Roy and Lillian Cranz Cullen Distinguished Professor of biology and biochemistry, is another one of McConnell's collaborator.

The use of information technology to protect law enforcement

Photo via of UH.edu

A tech-optimized police force is a safe police force, according to new UH research that shows that the use of information technology can cut down on the number of police officers killed or injured in the line of duty by as much as 50 percent.

"The use of IT by police increases the occupational safety of police officers in the field and reduces deaths and assaults against police officers," says C.T. Bauer College of Business Dean Paul A. Pavlou in a news release. Pavlou co-authored a paper on the research that was published in the journal Decision Support Systems.

Pavlou, along with his colleague, Min-Seok Pang of Temple University used FBI, the federal Bureau of Justice Statistics, and U.S. Census data to build a dataset, which tracked IT use and violence against law enforcement from 4,325 U.S. police departments over a six-year period, according to the release.

The study focused on crime intelligence, prediction, and investigation. The potential for IT in the police force had yet to be realized because there hadn't been much research on the subject.

A new solar energy capture and storage technology

Image via of UH.edu

New research coming out of UH has created a new and more efficient way to capture and store solar energy. Rather than using panels that store solar energy through photovoltaic technology, the new method, which is a bit of a hybrid, captures heat from the sun and stores it as thermal energy

The research, which was described in a paper in Joule, reports "a harvesting efficiency of 73% at small-scale operation and as high as 90% at large-scale operation," according to a news release.

The author of the paper, Hadi Ghasemi, is a Bill D. Cook Associate Professor of Mechanical Engineering at UH. He says the potential is greater due to the technology being able to harvest the full spectrum of sunlight. T. Randall Lee, Cullen Distinguished University Chair professor of chemistry, is also a corresponding author.

"During the day, the solar thermal energy can be harvested at temperatures as high as 120 degrees centigrade (about 248 Fahrenheit)," says Lee, who also is a principle investigator for the Texas Center for Superconductivity at UH. "At night, when there is low or no solar irradiation, the stored energy is harvested by the molecular storage material, which can convert it from a lower energy molecule to a higher energy molecule."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Innovative coastline project on Bolivar Peninsula receives federal funding

flood mitigation

The Galveston’s Coastal Barrier Project recently received federal funding to the tune of $500,000 to support construction on its flood mitigation plans for the area previously devastated by Hurricane Ike in 2008.

Known as Ike Dike, the proposed project includes implementing the Galveston Bay Storm Surge Barrier System, including eight Gulf and Bay defense projects. The Bolivar Roads Gate System, a two-mile-long closure structure situated between Galveston Island and Bolivar Peninsula, is included in the plans and would protect against storm surge volumes entering the bay.

The funding support comes from U.S. Army Corps of Engineers (USACE) and will go toward the preconstruction engineering and design phase of Ecosystem Restoration feature G-28, the first segment of the Bolivar Peninsula and West Bay Gulf Intracoastal Waterway Shoreline and Island Protection.

Coastal Barrier Project - Galveston Projects

The project also includes protection of critical fish and wildlife habitat against coastal storms and erosion.

“The Coastal Texas Project is one of the largest projects in the history of the U.S. Army Corps of Engineers,” says Col. Rhett A. Blackmon, USACE Galveston District commander, in a statement. “This project is important to the nation for many reasons. Not only will it reduce risk to the vulnerable populations along the Texas coast, but it will also protect vital ecosystems and economically critical infrastructure vital to the U.S. supply chain and the many global industries located here.”

Hurricane Ike resulted in over $30 billion in storm-related damages to the Texas coast, reports the Coastal Barrier Project, and created a debris line 15 feet tall and 40 miles long in Chambers County. The estimated economic disruption due to Hurricane Ike exceeded $150 billion, FEMA reported.

The project is estimated to take two years to complete after construction starts and will cost between $4 billion and $6 billion, reports Texas A&M University at Galveston.

Houston organization selects research on future foods in space health to receive $1M in funding

research and development

What would we eat if we were forced to decamp to another planet? The most immediate challenges faced by the food industry and astronauts exploring outside Earth are being addressed by The Translational Research Institute for Space Health (TRISH) at Baylor College of Medicine’s Center for Space Medicine’s newest project.

Earlier this month, TRISH announced the initial selection for its Space Health Ingress Program (SHIP) solicitation. Working with California Institute of Technology and Massachusetts Institute of Technology, the Baylor-based program chose “Future Foods for Space: Mobilizing the Future Foods Community to Accelerate Advances in Space Health,” led by Dr. Denneal Jamison-McClung at the University of California, Davis.

“TRISH is bringing in new ideas and investigators to propel space health research,” says Catherine Domingo, TRISH operations lead and research administration associate at Baylor College of Medicine, in the release. “We have long believed that new researchers with fresh perspectives drive innovation and advance human space exploration and SHIP builds on TRISH’s existing efforts to recruit and support new investigators in the space health research field, potentially yielding and high-impact ideas to protect space explorers.”

The goal of the project is to develop sustainable food products and ingredients that could fuel future space travelers on long-term voyages, or even habitation beyond our home planet.

Jamison-McClung and her team’s goal is to enact food-related space health research and inspire the community thereof by mobilizing academic and food-industry researchers who have not previously engaged with the realm of space exploration. Besides growing and developing food products, the project will also address production, storage, and delivery of the nutrition created by the team.

To that end, Jamison-McClung and her recruits will receive $1 million over the course of two years. The goal of the SHIP solicitation is to work with first-time NASA investigators, bringing new minds to the forefront of the space health research world.

“As we look to enable safer space exploration and habitation for humans, it is clear that food and nutrition are foundational,” says Dr. Asha S. Collins, chair of the SHIP advisory board, in a press release. “We’re excited to see how accelerating innovation in food science for space health could also result in food-related innovations for people on Earth in remote areas and food deserts.”

Clean energy nonprofit CEO to step down, search for replacement to begin

moving on

Greentown Labs, which is co-located in the Boston and Houston areas, has announced its current CEO is stepping down after less than a year in the position.

The nonprofit's CEO and President Kevin Knobloch announced that he will be stepping down at the end of July 2024. Knobloch assumed his role last September, previously serving as chief of staff of the United States Department of Energy in President Barack Obama’s second term.

“It has been an honor to lead this incredible team and organization, and a true privilege to get to know many of our brilliant startup founders," Knobloch says in the news release. “Greentown is a proven leader in supporting early-stage climatetech companies and I can’t wait to see all that it will accomplish in the coming years.”

The news of Knobloch's departure comes just over a month after the organization announced that it was eliminating 30 percent of its staff, which affected 12 roles in Boston and six in Houston.

According the Greentown, its board of directors is expected to launch a national search for its next CEO.

“On behalf of the entire Board of Directors, I want to thank Kevin for his efforts to strengthen the foundation of Greentown Labs and for charting the next chapter for the organization through a strategic refresh process,” says Dawn James, Greentown Labs Board Chair, in the release. “His thoughtful leadership will leave a lasting impact on the team and community for years to come.”

Knobloch reportedly shifted Greentown's sponsorship relationships with oil companies, sparking "friction within the organization," according to the Houston Chronicle, which also reported that Knobloch said he intends to return to his clean energy consulting firm.

------

This article originally ran on EnergyCapital.