Two Houston-based companies made it into this new clean tech accelerator. Photo via greentownlabs.com

The Low-Carbon Hydrogen Accelerator announced its inaugural class of clean tech startups — two of which hail from right here in Hosuton.

In all, seven startups have been chosen to participate this year in the Low-Carbon Hydrogen Accelerator, which was announced in November. The six-month accelerator program offers collaboration and engagement opportunities with the Electric Power Research Institute and its member utilities, as well as with Shell. Through the accelerator, the institute and Shell will provide startups with two innovation paths: a technology validation track and a technology demonstration track.

The accelerator — part of the Green Go program, affiliated with Greentown Labs — is aimed at coming up with innovations in low-carbon hydrogen production, storage, and distribution.

“Accelerating low-carbon hydrogen technologies is an essential part of achieving global net-zero targets by 2050,” Neva Espinoza, vice president of energy supply and low-carbon resources at the Electric Power Research Institute, says in a news release.

The inaugural LCHA cohort includes:

  • Advanced Ionics, based in Milwaukee, is enabling green hydrogen production without the green premium.
  • Arco Technologies from Bologna, Italy, is developing a proprietary Anion Exchange Membrane electrolyzer with the lowest capital expenditures and operating expenses possible today.
  • Based in Manchester in the United Kingdom, Clean Power is developing a novel, low-cost, highly durable hydrogen polymer electrolyte membrane fuel cell delivering zero-emission electricity.
  • Element Resources, based in Houston, is enabling compressed hydrogen storage tank technology.
  • Another local company, Smartpipe Technologies is developing a robust self-monitored repurposed pipeline system for hydrogen with minimal environmental disruption.
  • SPEC Sensors from California is creating a robust and reliable meshed sensor network for hydrogen leak detection and line-monitoring systems.
  • Canadian company RUNWITHIT Synthetics is creating a live, digital twin modeling platform that generates decision-support data for regional hydrogen-demand scenarios.

Element Resources, which produces hydrogen from renewables for mobility, power production, and energy storage, is collaborating with Zhifeng Ren, M.D. Anderson chair professor in physics and director of the Texas Center for Superconductivity at the University of Houston.

The other Houston startup, Smartpipe Technologies, announced earlier this month that Canadian pipeline company Enbridge had made a $6.6 million investment in the startup.

For 2022, the accelerator received applications from 88 startups in 18 countries. The five other participants this year are from California; Wisconsin; Alberta, Canada; Italy; and the United Kingdom.

Aside from the Electric Power Research Institute, Shell USA, and Greentown, the accelerator’s partners are the City of Houston and the Urban Future Lab at New York University’s Tandon School of Engineering.

“Creating a robust hydrogen economy will require a systems-oriented approach and unparalleled cooperation between corporate partners and emerging companies,” says Ryan Dings, chief operating officer and general counsel at Greentown Labs.

Greentown operates startup incubators in Somerville, Massachusetts, and Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.