U.S. Congressman Jake Ellzey made the announcement in Dallas last week. Photo courtesy of Google

Google is making a big investment in Texas to the tune of $1 billion.

According to a news release from the company, the tech giant will spend more than $1 billion to support its cloud and data center infrastructure and expand its commitment to clean energy.

The $1 billion will be spent on data center campuses in Midlothian and Red Oak to help meet growing demand for Google Cloud, AI innovations, and other digital products and services such as Search, Maps, and Workspace.

In addition to its data center investment, Google has also forged long-term power purchase agreements with Houston-based Engie, as well as Madrid-based entities Elawan, Grupo Cobra, and X-ELIO for solar energy based in Texas. Together, these new agreements are expected to provide 375 MW of carbon-free energy capacity, which will help support Google’s operations in Texas.

These agreements were facilitated through LEAP (LevelTen Energy’s Accelerated Process), which was co-developed by Google and LevelTen Energy to make sourcing and executing clean energy PPAs more efficient, and contributes to the company’s ambitious 2030 goal to run on 24/7 carbon-free energy on every grid where it operates.

The company has contracted with energy partners to bring more than 2,800 megawatts (MW) of new wind and solar projects to the state. Google’s CFE percentage in the ERCOT grid region, which powers its Texas data centers, nearly doubled from 41 percent in 2022 to 79 percent in 2023.

The initiatives were announced at a conference in Midlothian on August 15, attended by business leaders and politicians including U.S. Congressman Jake Ellzey, c, Ted Cruz, and Citi CIO Shadman Zafar.

The Dallas cloud region is part of Google Cloud's global network of 40 regions that delivers services to large enterprises, startups, and public sector organizations.

In a statement, Piazza said that "expanding our cloud and data center infrastructure in Midlothian and Red Oak reflects our confidence in the state's ability to lead in the digital economy."

Data centers are the engines behind the growing digital economy. Google has helped train more than 1 million residents in digital skills through partnerships with 590 local organizations, including public libraries, chambers of commerce, and community colleges.

In addition to its cloud region and Midlothian data center, Google has offices in Austin, Dallas, and Houston. The new Google’s total investment in Texas to more than $2.7 billion.

———

This article originally ran on CultureMap.

Through a first-of-its-kind proposal, Las Vegas-based public utility NV Energy would supply geothermal power generated by Fervo Energy for Google’s two data centers in Nevada. Photo via blog.google

Houston geothermal company grows Google partnership to provide power to Nevada

feeling lucky

Houston-based Fervo Energy’s geothermal energy soon will help power the world’s most popular website.

Through a first-of-its-kind proposal, Las Vegas-based public utility NV Energy would supply 115 megawatts of geothermal power generated by Fervo for Google’s two data centers in Nevada. Financial terms weren’t disclosed.

In 2021, Google teamed up with Fervo to develop a pilot project for geothermal power in Nevada. Two years later, electricity from this project started flowing into the Nevada grid serving the two Google data centers. Google spent $600 million to build each of the centers, which are in Henderson, a Las Vegas suburb, and Storey County, which is east of Reno.

The proposed agreement with NV Energy would bring about 25 times more geothermal power capacity to the Nevada grid, Google says, and enable more around-the-clock clean power for the search engine company’s Nevada data centers.

A data center gobbles up 10 to 50 times the energy per square foot of floor space that a typical office building does, according to the U.S. Department of Energy.

“NV Energy and Google’s partnership to develop new solutions to bring clean … energy technology — like enhanced geothermal — onto Nevada’s grid at this scale is remarkable. This innovative proposal will not be paid for by NV Energy’s other customers but will help ensure all our customers benefit from cleaner, greener energy resources,” Doug Cannon, president and CEO of NV Energy, says in a Google blog post.

Utility regulators still must sign off on the proposal.

“If approved, it provides a blueprint for other utilities and large customers in Nevada to accelerate clean energy goals,” Cannon says.

------

This article originally ran on EnergyCapital.

Fervo Energy's Project Red with Google is officially operational. Photo via blog.google

Houston startup's sustainable energy project with Google goes online

switch flipped

Google is on a mission to run all of its data centers and office campuses on constant carbon-free energy by 2030, and the tech giant is one step closer to that goal.

Last week, Google announced that its 24/7 carbon-free energy, or CFE, in Nevada to power its local data center in the state is officially operational. The facility is powered by Houston-based Fervo Energy's geothermal technology, a project — called Project Red — that began in 2021 and celebrated its successful pilot this summer.

"When we began our partnership with Fervo, we knew that a first-of-a-kind project like this would require a wide range of technical and operational innovations," Michael Terrell, senior director of energy and climate at Google, writes in a blog post about the partnership.

Fervo relies on tried and true drilling techniques from the oil and gas industry, accessing heat energy that previously has been elusive to traditional geothermal methods, Terrell continues. Fervo dug two horizontal wells at the Nevada plant, as well as installed fiber-optic cables to capture data that tracks performance and other key information.

"The result is a geothermal plant that can produce round-the-clock CFE using less land than other clean energy sources and drawing on skills, knowledge, and supply chains that exist in other industries," Terrell says. "From our early commitment to support the project’s development to its successful completion, we’ve worked closely with Fervo to overcome obstacles and prove that this technology can work."

Google also recently announced a partnership with Project InnerSpace, a nonprofit focused on global geothermal energy development.

Fervo is working on another nearby project, the company announced in September. The 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

------

This article originally ran on EnergyCapital.

This week's roundup of Houston innovators includes Sarah Hein of March Biosciences, Sean Kelly of Amperon, Donnell Debnam Jr. of the Google in Residence program, and the 2023 Houston Innovation Awards judges. Photos courtesy

3+ Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries, from biotech to energy software, recently making headlines in Houston innovation — plus the decision makers for the Houston Innovation Awards.

Sarah Hein, CEO and co-founder of March Biosciences

Early-stage cell therapy startup March Biosciences has partnered with CTMC. Photo via march.bio

Named in part after one of the best months out of the year for Houstonians, March Biosciences has entered into a uniquely Houston partnership. Sarah Hein, CEO and co-founder of the cancer immunotherapy startup, met her co-founders at the TMC Accelerator for Cancer Therapeutics.

“It's a perfect example of the opportunities here in Houston where you can go from bench to bedside, essentially, in the same institution. And Baylor has been particularly good at that because of the Center for Cell and Gene Therapy,” says Hein.

The company recently announced a partnership with another Houston institution, CTMC. Read more.

Sean Kelly, CEO and co-founder of Amperon

It's payday for a startup that's improving analytics for its energy customers. Photo via Getty Images

Amperon Holdings Inc. raised $20 million in its latest round of funding in order to accelerate its energy analytics and grid decarbonization technology.

The fresh funding will support the company in evolving its platform that conducts electricity demand forecasting to a comprehensive data analytics solution.

“The energy transition is creating unprecedented market volatility, and Amperon is uniquely positioned to help market participants better navigate the transitioning grid – both in the U.S. and as we expand globally,” Sean Kelly, CEO and co-founder of Amperon, says. Read more.

Donnell Debnam Jr., instructor in the Google in Residence program

Thanks to Google, Donnell Debnam Jr. is helping train future software engineers at Prairie View A&M University. Photo via LinkedIn

Computer science students at Prairie View A&M University are gaining firsthand knowledge this semester from a Google software engineer.

As an instructor in the Google in Residence program, Donnell Debnam Jr. is helping train future software engineers — and other potential tech professionals — who are enrolled this fall in Prairie View A&M’s introductory computer science course. Fifty-four students are taking the class.

“I participated in the Google in Residence program as a student, and I am honored to return as an instructor,” says Debnam. “This innovative program was created to support greater diversity in the tech industry, and as an instructor, I have the privilege of helping the next generation of software engineers create a more inclusive culture within the STEM fields.” Read more.

2023 Houston Innovation Awards judges

Bonus innovators to know: The 10 Houstonians deciding the finalists and winners for this year's Houston Innovation Awards. Photos courtesy

Ten Houstonians are in the hot seat for deciding the best companies and individuals in Houston's innovation ecosystem.

InnovationMap has announced its 2023 Houston Innovation Awards judging panel, which includes startup founders, nonprofit leaders, investors, corporate innovators, and more.

Meet the 10 selected judges who will evaluate applications from the nearly 400 nominations that were submitted this year. Read more.

Thanks to Google, Donnell Debnam Jr. is helping train future software engineers at Prairie View A&M. Photo via LinkedIn

Google program plants software expert at Houston-area university

meet the faculty

Computer science students at Prairie View A&M University are gaining firsthand knowledge this semester from a Google software engineer.

As an instructor in the Google in Residence program, Donnell Debnam Jr. is helping train future software engineers — and other potential tech professionals — who are enrolled this fall in Prairie View A&M’s introductory computer science course. Fifty-four students are taking the class.

“I participated in the Google in Residence program as a student, and I am honored to return as an instructor,” says Debnam. “This innovative program was created to support greater diversity in the tech industry, and as an instructor, I have the privilege of helping the next generation of software engineers create a more inclusive culture within the STEM fields.”

Prairie View A&M is one of 14 historically black colleges and universities (HBCUs) and Hispanic-serving schools that are benefiting this fall from the Google residency program. Since being founded in 2013, the program has enabled more than 8,000 college students across the country to absorb knowledge from Google tech professionals.

The Google program addresses a nationwide gap in tech diversity.

A 2023 report from CompTIA, a trade group for the tech industry, shows Black professionals make up 12 percent of the U.S. workforce but eight percent of tech occupations, while Hispanic professionals represent 17 percent of the U.S. workforce but eight percent of tech occupations.

Prairie View A&M, an HBUC, is one of two Texas universities in this fall’s program. The other is the University of Texas at El Paso, a Hispanic-serving school. The main campus of Prairie View A&M is roughly 45 miles northwest of Houston.

Google says Debnam is equipping students at Prairie View A&M “with the skills needed to enter the workforce, such as fundamental coding concepts, how to debug, and how to prepare for technical interviews.”

As a student in 2017, Debnam participated in the Google residency program at Hampton University, an HBCU in Hampton, Virginia. In a LinkedIn post, Debnam wrote that since then, “I always said to myself and others that if I could figure out a way to get into Google someday, I would make it a priority to try to be part of this program.”

After completing two Google internships and earning a bachelor’s degree in computer science from Hampton, Debnam joined the tech giant as a full-time software engineer in 2021.

“If you know me, you know I have a passion for tech, but an even deeper passion for working with students and being a resource in any way possible,” he wrote on LinkedIn.

Nai-Hui Chia, an assistant professor of computer science at Rice, was recognized for his research on Hamiltonian simulations, a method for representing the motion of moving particles. Photo via Rice.edu

Houston professor earns Google Scholar award for quantum computing research

recent recognition

A Rice University quantum computer scientist was one of 78 global professors to be presented with a 2023 Google Scholar award, the university announced this month.

Nai-Hui Chia, an assistant professor of computer science at Rice, was recognized for his research on Hamiltonian simulations, a method for representing the motion of moving particles. Chia aims to understand if quantum computers or machines can simulate a "Hamiltonian matrix" with a shorter evolution time.

"We call this fast-forwarding for a Hamiltonian simulation,” Chia says in a statement.

Chia aims to use the funds from Google to discover Hamiltonians that can be fast-forwarded using parallelism or classical computation, according to Rice. He will present his current work on Hamiltonians and their connection to cryptology in July at the 2023 Computational Complexity Conference in Warwick, UK.

The Google Research Scholar program grants funds of up to $60,000 to support professors' research around the world. This year's cohort works in fields ranging from algorithms and optimization to natural language processing to health research.

Three other Texas researchers were awarded funds in the 2023 cohort.

The University of Texas at Austin's Jon Tamir was awarded for his work in applied sciences. Atlas Wang, also from UT, was awarded in the machine learning and data mining category. Shenglong Xu, from Texas A&M University, joined Chia in the quantum computing category.

Tech behemoth Google has awarded funds to several Houston innovators in recent years.

Last summer the company named AnswerBite, Boxes and Ease to its inaugural cohort of the Google for Startups Latino Founders Fund. Selected companies received an equity-free $100,000 investment, as well as programming and support from Google.

In September 2022, ChurchSpace and Enrichly were named part of the Google for Startups Black Founders Fund. The companies also received $100,000 non-dilutive awards along with mentoring and support.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."