Houston is one of only five WeWork Labs markets that can expect access to 3D printers as a part of a pilot program with two companies. Courtesy of WeWork

WeWork has teamed up with two leading 3D printing companies to bring their technology into five WeWork Labs markets — including Houston's downtown location. The other locations tapped for the pilot program are London, San Francisco, New York, and Seattle.

Massachusetts-based Formlabs' Form 2 printer has over 20 different material resins WeWork Labs members can use to prototype and print products using desktop stereolithography.

"Formlabs was founded eight years ago on the basis of empowering anyone to make anything," says Max Lobovsky, CEO and co-founder of Formlabs in a release. "Today, our customers have printed more than 40 million parts, they vary from early stage entrepreneurs changing the status quo and developing new applications to Fortune 500s experimenting with new business models or production methods."

The other company involved in the program is Seattle-based Glowforge, which created a 3D laser printer. Glowforge Plus uses subtractive laser technology to cut and sculpt projects from materials like wood, leather, acrylic, stone — and even stickers. The company, which was founded in 2014, has had over three million prints on its devices — everything from jewelry and clothing to machinery.

"We are thrilled to partner with WeWork Labs to provide their community of entrepreneurs and startups alike access to the tools that will help them create corporate giveaways, new product prototypes, and full production runs — everything to take their dreams from idea to creation," says Dan Shapiro, CEO of Glowforge, in the release.

The printers will be revealed at various launch events celebrating the National Week of Making, which begins June 21 and goes through June 27. Houston's launch event will be on June 28, but the specifics have not yet been finalized.

"We see WeWork Labs as a platform for creators, innovators and makers alike, and believe partnering with Glowforge and Formlabs will give our members even more of an opportunity to take their ideas, and bring them to life," says Katie Perkins, creative director at WeWork Labs, in the release. "We are incredibly excited to welcome two leading brands and their products into our community, giving creators access to the tools they need and inspiring new creators to be makers themselves."

Houston's WeWork Labs program launched in March in the WeWork Jones Building at 708 Main St. and includes a partnership with local digital startup resource, Alice. The WeWork Labs program started a little over a year ago and is already in over 30 markets worldwide.

"As the fourth largest city, Houston is in a unique position to launch high-impact startups," says Houston Labs Manager Carlos Estrada, in a previous release. "We see WeWork Labs in Houston as a tremendous platform for innovation, as our founder-focused approach to supporting early-stage startups will nurture and accelerate the work of entrepreneurs to scale their solutions to today's biggest challenges."

Form 2

Courtesy of WeWork

Using 20 types of resin materials, Formlabs' Form 2 can create parts or prototypes.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”