Panelists from the University of Houston and Houston Methodist discussed tech transfer challenges and opportunities for academic innovators. Photo courtesy

Groundbreaking and disruptive innovations across industries are coming out of research institutions, and their commercialization process is very different from other startups.

An expert panel within Technology transfer discussed some of the unique obstacles innovators face as they go from academia into the market — like patenting, funding, the valley of death, and more.

Missed the conversation? Here are eight key moments from the panel that took place at the University of Houston's Technology Bridge on Wednesday, May 19.

This event was hosted by InnovationMap and University of Houston.

“If your technology can immediately impact some industry, I think you should license out your technology. But if you think that the reward is much higher and does not yet match something in the industry, you should go the high risk, high reward path of doing it yourself. That’s a much more challenging. It takes years of work.”

— Hadi Ghasemi, co-founder of Elemental Coatings and Cullen associate professor in the department of mechanical engineering at the University of Houston, says on how tech transfer usually happens via those two pathways. Ghasemi explains that it also depends on the academic's passion for the product and interest in becoming an entrepreneur.

“There’s a mismatch in that you can have a really clinically impactful technology but still not have money to develop it into a product.” 

— Rashim Singh, co-founder of Sanarentero and a research assistant professor of pharmaceutics at the University of Houston College of Pharmacy, says on the different priorities from within academia and within the market.

“What I’ve seen is if you know you want to patent something, tell the right people early. Make sure you have the right players involved. Our tech office already has venture, Pharma, etc. partners that can help with the patent process.”

— Ginny Torno, administrative director of innovation and IT clinical systems at Houston Methodist

“You don’t need to be fully transparent about your technology. As a company, you need to have some secret sauce."

— Ghasemi says on the patent and paper publishing process. Academics are used to publishing their research, but when it comes to business, you need to hold some things close to the chest.

“One of the most important piece the UH Tech Bridge has provided is the wet lab space to develop these technologies a little further toward commercialization. … Wet lab is very precious space in Houston specifically because there isn’t much here.”

— Singh says on how important access to lab space is to the entrepreneur.

"“You’re starting to see more and more organizations that have innovation arms. ... There are a lot of focus on trying to make Houston another innovation hub, and I think there is more support now than even a few years ago.”

— Torno says on what's changed over the past few years, mentioning TMC3 and the Ion.

“Try to serve private capital as soon as possible. The grant money comes, and those are good and will help you prove out your technology. But once you have private money, it shows people care about your product.”

— Ghasemi says as a piece of advice for potential tech transfer entrepreneurs.

“The biggest gap is to arrange for funding — federal, private, etc. — to support during the valley of death.”

— Singh says on the struggle research-based startups, especially in drug discovery, faces as they fight to prove out their product and try to stay afloat financially.

This week's innovators to know roundup includes three experts within the tech transfer space in Houston. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: It's a very special edition of the Monday innovators to know series. On Wednesday, all three of today's innovators will join me and InnovationMap for a panel discussing technology transfer — the process in general, what resources are available within their institutions, IP and grant writing, and so much more. Read more about the panelists below and click here to register for the free event.

Ginny Torno, Administrative Director, Innovation and IT Clinical Systems at Houston Methodist

Image courtesy

Ginny Torno has a long career at Houston Methodist, including work within research. Now, she's leading innovation initiatives at the deployment level within the hospital's technology center. Torno can speak to both the research and the implementation done within innovation at Houston Methodist.

Hadi Ghasemi, co-founder of Elemental Coatings and Cullen associate professor in the department of mechanical engineering at the University of Houston

Image courtesy

Hadi Ghasemi is Cullen associate professor in the department of mechanical engineering at UH. His research interests are in nanotechnology, surface physics, and heat transfer.

In 2018, Ghasemi co-founded Elemental Coatings, formerly SurfEllent, an anti-icing and anti-scaling coatings that aims to make the many problems associated with ice and scale buildup a thing of the past.

Rashim Singh, co-founder of Sanarentero and a research assistant professor of pharmaceutics at the University of Houston College of Pharmacy

Image courtesy

Co-founder of Sanarentero, Rashim Singh is developing therapies for gut-related diseases and disorders. Focused on her company, Singh can speak to the drug discovery process, grant writing, and more within the pharmaceutical space.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.