A new program at Rice University will educate recent graduates or returning learners on key opportunities within energy transition. Photo via Rice.edu

A Houston university has committed to preparing the workforce for the future of energy with its newest program.

Rice University announced plans to launch the Master of Energy Transition and Sustainability, or METS, in the fall. The 31 credit-hour program, which is a joint initiative between Rice's George R. Brown School of Engineering and the Wiess School of Natural Sciences, "will train graduates to face emergent challenges in the energy sector and drive innovation in sustainability across a wide range of domains from technology to economics and policy," according to the university.

“We believe that METS graduates will emerge as leaders and innovators in the energy industry, equipped with the skills and knowledge to drive sustainable solutions,” Rice President Reginald DesRoches says in the release. “Together we can shape a brighter, more resilient and cleaner future for generations to come.”

Some of the focus points of the program will be geothermal, hydrogen, and critical minerals recovery. Additionally, there will be education around new technologies within traditional oil and gas industry, like carbon capture and sequestration and subsurface storage.

“We are excited to welcome the inaugural cohort of METS students in the fall of 2024,” Thomas Killian, dean of the Wiess School of Natural Sciences and a professor of physics and astronomy, says in the release. “This program offers a unique opportunity for students to delve into cutting-edge research, tackle real-world challenges and make a meaningful impact on the future of energy.”

The new initiative is just the latest stage in Rice's relationship with the energy industry.

“This is an important initiative for Rice that is very much aligned with the university’s long-term commitment to tackle urgent generational challenges, not only in terms of research — we are well positioned to make significant contributions on that front — but also in terms of education,” says Michael Wong, the Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and a professor of chemistry, materials science and nanotechnology and of civil and environmental engineering. “We want prospective students to know that they can confidently learn the concepts and tools they need to thrive as sustainability and energy transition experts and thought leaders.”

------

This article originally ran on EnergyCapital.

Tim Latimer, CEO and co-founder of Fervo Energy, is seeing success at his company's Utah geothermal site. Photo via LinkedIn

Houston energy startup reports 'dramatic acceleration' of drilling operations at geothermal project

big win

Early drilling results indicate a geothermal energy project operated in Utah by Houston-based startup Fervo Energy is performing better than expected.

Fervo says its drilling operations Utah’s Cape Station show a 70 percent reduction in drilling times, paving the way for advancement of its geothermal energy system. Fervo began construction last year on Cape Station, which is set to deliver clean power to the grid in 2026 and be fully operating by 2028.

The company recently published early drilling results from Cape Station that it says exceed the U.S. Department of Energy’s expectations for enhanced geothermal systems. Fervo says these results “substantiate the rapid learning underway in the geothermal industry and signal readiness for continued commercialization.”

Founded in 2017, Fervo provides carbon-free energy through development of next-generation geothermal power.

Fervo began drilling at Cape Station, a 400-megawatt project in southwest Utah, in June 2023. Over the past six months, the company has drilled one vertical well and six horizontal wells there. The company reports that costs for the first four horizontal wells at Cape Station fell from $9.4 million to $4.8 million per well.

“Since its inception, Fervo has looked to bring a manufacturing mentality to enhanced geothermal development, building a highly repeatable drilling process that allows for continuous improvement and, as a result, lower costs,” Tim Latimer, Fervo’s co-founder and CEO, says in a news release. “In just six months, we have proven that our technology solutions have led to a dramatic acceleration in forecasted drilling performance.”

Trey Lowe, chief technology officer of Oklahoma City-based oil and gas producer Devon Energy, likens Fervo’s drilling results to “the early days of the shale revolution.” Last year, Devon invested $10 million in Fervo.

“When you operate continually and understand the resource, you dramatically streamline operations. That’s the unique value of Fervo’s approach to enhanced geothermal,” says Lowe.

Last summer, Fervo reported the results of another one of its projects, Project Red, which is in northern Nevada and made possible through a 2021 partnership with Google. That site officially went online for the tech company in December.

------

This article originally ran on EnergyCapital.

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. Photo via sagegeosystems.com

Houston energy startup closes $17M series A to fund Texas geothermal facility

money moves

A Houston geothermal startup has announced the close of its series A round of funding.

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. The proceeds aim to fund its first commercial geopressured geothermal system facility, which will be built in Texas in Q4 of 2024. According to the company, the facility will be the first of its kind.

The venture is joined by technology investor Arch Meredith, Helium-3 Ventures and will include support from existing investors Virya, LLC, Nabors Industries Ltd., and Ignis Energy Inc.

“The first close of our Series A funding and our commercial facility are significant milestones in our mission to make geopressured geothermal system technologies a reality,” Cindy Taff, CEO of Sage Geosystems, says in a news release. “The success of our GGS technologies is not only critical to Sage Geosystems becoming post-revenue, but it is an essential step in accelerating the development of this proprietary geothermal baseload approach.

"This progress would not be possible without the ongoing support from our existing investors, and we look forward to continuing this work with our new investors," she continues.

The 3-megawatt commercial facility will be called EarthStore and will use Sage’s technology that harvests energy from pressurized water from underground. The facility will be able to store energy — for short and long periods of time — and can be paired with intermittent renewable energy sources like wind and solar. It will also be able to provide baseload, dispatchable power, and inertia to the electric grid.

In 2023, Sage Geosystems debuted the EarthStore system in a full-scale commercial pilot project in Texas. The pilot produced 200 kilowatt for more than 18 hours, 1 megawatt for 30 minutes, and generated electricity with Pelton turbines. The system had a water loss of less than 2 percent and a round-trip efficiency (RTE) of 70-75.

Cindy Taff of Sage Geosystems explains why she's so optimistic about geothermal and her company's technology. Photo courtesy of Sage

Houston sustainability startup founder on why geothermal is a 'cornerstone' tech for energy transition

Q&A

Geothermal energy is an integral part of decarbonizing the energy industry, and Sage Geosystems CEO Cindy Taff believes her company's tech has what it takes to lead the way.

Founded in Houston in 2020, Sage Geosystems is focused on two business lines — energy storage and geothermal. In addition to developing these technologies, Taff says Sage has "cracked the code" on both reducing costs and maximizing electricity output. Sage has customers ranging from Nabors, the world’s largest land-based drilling company, and Virya LLC, an investor in climate ventures with high impact of eliminating global greenhouse gas emissions or sequestering CO2

In a Q&A that originally ran on EnergyCapital, she explains why she's so optimistic about geothermal and her company's technology.

EnergyCapital: Why do you believe geothermal has a major role to play in the energy transition?

CindyTaff: Geothermal energy is not just a contender in the energy transition; it is a cornerstone. The question isn’t if we can drive down the costs to be competitive with wind, solar, and natural gas—it’s when. As renewable credits for solar and wind begin to expire, these industries will face the reality of their “real costs.”

As a 24/7 renewable energy source, it provides a constant and reliable power supply, unlike the intermittent nature of solar and wind. Moreover, the rising costs of lithium-ion batteries, driven by the increasing scarcity of lithium and cobalt, further underscore geothermal’s economic viability.

My extensive experience in both geothermal and the O&G sector is a testament to the synergistic relationship between these industries. The skills honed in O&G are not only transferable—they are essential to advancing geothermal technologies. In summary, the O&G industry can make a huge impact to geothermal by systematically driving down costs while scaling up, which is exactly what we did for unconventional shales.

EC: When it comes to finding partners or investors, what are you looking for? What should potential partners/investors know about Sage?

CT: Our technology is ready to scale today, not five to 10 years into the future. We will deliver our first energy storage power plant in 2024 and our first enhanced geothermal power plant in 2025. We are looking for synergies with investors, such as companies with power market or O&G expertise.

In addition, we seek to partner with others who have local content and relationships in places around the world to enable us to quickly and broadly scale our technologies. Sage's technologies are extremely flexible, in that we can deliver energy storage or enhanced geothermal to the utility grid or behind-the-meter to targeted commercial customers, including a dedicated microgrid (i.e., for the U.S. Air Force). Our technologies can provide electricity to remote locations such as mining operations or to large population centers such as Houston, and everything in between.

EC: What's the biggest challenge Sage is facing as an energy transition startup and how do you plan to tackle it?

CT: A common misunderstanding about Sage is that we only do energy storage or that we only do geothermal. However, we do both and the technologies build on one another. Essentially, our energy storage technologies will allow us to "walk" before we "run" with geothermal. On a related point, at this point in the energy transition, time to commercialization and affordability of new clean technology are the leading factors in terms of climate impact. As the first geothermal company to deliver a cost-effective commercial enhanced geothermal system, we are poised to truly make a meaningful difference.

EC: As a woman in a male-dominated industry tackling a global problem, what's been your biggest lesson learned? What's your advice to fellow energy tech female founders?

CT: In my journey as a woman in the energy tech industry, I’ve been fortunate to focus on the work and the global challenges we’re addressing, rather than on any gender-based obstacles. My biggest lesson learned is that innovation and leadership know no gender. Success is driven by perseverance, vision, and collaboration.

------

This conversation has been edited for brevity and clarity.

Fervo Energy's Project Red with Google is officially operational. Photo via blog.google

Houston startup's sustainable energy project with Google goes online

switch flipped

Google is on a mission to run all of its data centers and office campuses on constant carbon-free energy by 2030, and the tech giant is one step closer to that goal.

Last week, Google announced that its 24/7 carbon-free energy, or CFE, in Nevada to power its local data center in the state is officially operational. The facility is powered by Houston-based Fervo Energy's geothermal technology, a project — called Project Red — that began in 2021 and celebrated its successful pilot this summer.

"When we began our partnership with Fervo, we knew that a first-of-a-kind project like this would require a wide range of technical and operational innovations," Michael Terrell, senior director of energy and climate at Google, writes in a blog post about the partnership.

Fervo relies on tried and true drilling techniques from the oil and gas industry, accessing heat energy that previously has been elusive to traditional geothermal methods, Terrell continues. Fervo dug two horizontal wells at the Nevada plant, as well as installed fiber-optic cables to capture data that tracks performance and other key information.

"The result is a geothermal plant that can produce round-the-clock CFE using less land than other clean energy sources and drawing on skills, knowledge, and supply chains that exist in other industries," Terrell says. "From our early commitment to support the project’s development to its successful completion, we’ve worked closely with Fervo to overcome obstacles and prove that this technology can work."

Google also recently announced a partnership with Project InnerSpace, a nonprofit focused on global geothermal energy development.

Fervo is working on another nearby project, the company announced in September. The 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas lands in top 10 states expected to be most financially affected by weather events

report

Texas — home to everything from tornadoes to hurricanes — cracks the top 10 of a new report ranking states based on impact from weather-related events.

SmartAsset's new report factored in a myriad of data from the Federal Emergency Management Agency to identify which states face the most financial risk due to various weather events. In the report, the states were ranked by the total expected annual financial losses per person. Texas ranked at No. 10.

"With a variety of environmental events affecting the wide stretch of the United States, each state is subject to its own risks," reads the report. "Particularly, tornadoes, wildfires, hurricanes, flooding, landslides, lightning and drought, among other events, can cause damage to buildings, agriculture and individuals alike. When considering insurance, residents and business owners in each state should account for historic and projected losses due to environmental events in their financial plans."

In Texas, the total expected annual loss per person is estimated as $283.15. The report broke down each weather event as follows:

  • Coastal flooding: $1.49
  • Drought: $3.48
  • Earthquake: $1.71
  • Heat wave: $8.16
  • Hurricane: $89.22
  • Riverine flooding: $66.05
  • Strong wind: $5.37
  • Tornado: $71.04
  • Wildfire: $8.26
  • Winter weather: $1.96
Louisiana ranked as No. 1 on the list with $555.55 per person. The state with the lowest expected loss per person from weather events was Ohio with only $63.89 estimated per person.


------

This article originally ran on EnergyCapital.

Exclusive: Houston hydrogen spinout names energy industry veteran as CEO

good as gold

Cleantech startup Gold H2, a spinout of Houston-based energy biotech company Cemvita, has named oil and gas industry veteran Prabhdeep Singh Sekhon as its CEO.

Sekhon previously held roles at companies such as NextEra Energy Resources and Hess. Most recently, he was a leader on NextEra’s strategy and business development team.

Gold H2 uses microbes to convert oil and gas in old, uneconomical wells into clean hydrogen. The approach to generating clean hydrogen is part of a multibillion-dollar market.

Gold H2 spun out of Cemvita last year with Moji Karimi, co-founder of Cemvita, leading the transition. Gold H2 spun out after successfully piloting its microbial hydrogen technology, producing hydrogen below 80 cents per kilogram.

The Gold H2 venture had been a business unit within Cemvita.

“I was drawn to Gold H2 because of its innovative mission to support the U.S. economy in this historical energy transition,” Sekhon says in a news release. “Over the last few years, my team [at NextEra] was heavily focused on the commercialization of clean hydrogen. When I came across Gold H2, it was clear that it was superior to each of its counterparts in both cost and [carbon intensity].”

Gold H2 explains that oil and gas companies have wrestled for decades with what to do with exhausted oil fields. With Gold H2’s first-of-its-kind biotechnology, these companies can find productive uses for oil wells by producing clean hydrogen at a low cost, the startup says.

“There is so much opportunity ahead of Gold H2 as the first company to use microbes in the subsurface to create a clean energy source,” Sekhon says. “Driving this dynamic industry change to empower clean hydrogen fuel production will be extremely rewarding.”

In 2022, Gold H2 celebrated its successful Permian Basin pilot and raised early-stage funding. In addition to Gold H2, Cemvita also spun out a resource mining operation called Endolith. In a podcast episode, Karimi discussed Cemvita's growth and spinout opportunities.

Rice University's student startup competition names 2024 winners, awards $100,000 in prizes

taking home the W

A group of Rice University student-founded companies shared $100,000 of cash prizes at an annual startup competition.

Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge, hosted by Rice earlier this month, named its winners for 2024. HEXASpec, a company that's created a new material to improve heat management for the semiconductor industry, won the top prize and $50,000 cash.

Founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program, HEXASpec is improving efficiency and sustainability within the semiconductor industry, which usually consumes millions of gallons of water used to cool data centers. According to Rice's news release, HEXASpec's "next-generation chip packaging offer 20 times higher thermal conductivity and improved protection performance, cooling the chips faster and reducing the operational surface temperature."

The rest of the winners included:

  • Second place and $25,000: CoFlux Purification
  • Third place and $15,000: Bonfire
  • Outstanding Achievement in Social Impact Award and $1,500: EmpowerU
  • Outstanding Achievement in Artificial Intelligence and $1,000: Sups and Levytation
  • Outstanding Achievement in Consumer Goods Prize and $1,000: The Blind Bag
  • Frank Liu Jr. Prize for Creative Innovations in Music, Fashion and the Arts and $1,500: Melody
  • Outstanding Achievement in Climate Solutions Prizes and $1,000: Solidec and HEXASpec
  • Outstanding Undergraduate Startup Award and $2,500: Women’s Wave
  • Audience Choice Award and $2,000: CoFlux Purification

The NRLC, open to Rice students, is Lilie's hallmark event. Last year's winner was fashion tech startup, Goldie.

“We are the home of everything entrepreneurship, innovation and research commercialization for the entire Rice student, faculty and alumni communities,” Kyle Judah, executive director at Lilie, says in a news release. “We’re a place for you to immerse yourself in a problem you care about, to experiment, to try and fail and keep trying and trying and trying again amongst a community of fellow rebels, coloring outside the lines of convention."

This year, the competition started with 100 student venture teams before being whittled down to the final five at the championship. The program is supported by Lilie’s mentor team, Frank Liu and the Liu Family Foundation, Rice Business, Rice’s Office of Innovation, and other donors

“The heart and soul of what we’re doing to really take it to the next level with entrepreneurship here at Rice is this fantastic team,” Peter Rodriguez, dean of Rice Business, adds. “And they’re doing an outstanding job every year, reaching further, bringing in more students. My understanding is we had more than 100 teams submit applications. It’s an extraordinarily high number. It tells you a lot about what we have at Rice and what this team has been cooking and making happen here at Rice for a long, long time.”

HEXASpec was founded by Rice Ph.D. candidates Tianshu Zhai and Chen-Yang Lin, who are a part of Lilie’s 2024 Innovation Fellows program. Photo courtesy of Rice