How is technology affecting the energy sector? These experts weigh in. Getty Images

Last week, Houston-based Pink Petro hosted its annual conference — but, quite like other events across the country, it took a very digital approach.

Energy 2.0, formerly called HerWorld, was always going to be streamed from two locations — Denver and Houston — but the conference, which took place from March 9 to 11, likely had more digital attendees than previous years thanks to the rising threat of COVID19, or the coronavirus.

The digital shift was pretty on par with the conversation of the "unconference," as its called. The last panel of March 10 was how tech was rattling the energy industry. Three panelists discussed the effect of technology on the industry, climate change, startups, and more. Here are some of the panelists best points made during this event.

“Technology isn’t new to the energy sector. The energy sector is used to adopting and adapting to new technologies. What we are talking about now is digital technology, and what’s happening there — we are not familiar with that.”

Geeta Thakorlal, president at Worley Digital. It's not innovation that's unfamiliar to energy companies, but the digital aspect, which includes introducing new tech from outside the industry. "When you talk about adoption and use of digital technology, it means different things to different people," she adds.

"We’re taking a look at technology, but also addressing the people [aspect] — looking at what people are doing with technology and how the social issues are impacted by technology."

JenniferHohman, CIO and vice president, at Seadrill. The conversation started with a broad scope on how the energy industry is approaching technology, and Hohman cites climate change and sex trafficking — two issues the industry has been affecting.

“As society is changing, we start to worry about people’s safety — that’s very natural in our industry, but moving that into what about social issues or even renewables."

DavidReid, CMO of National Oilwell Varco. Reid adds that the energy industry is aware of its role in the world and has a people-centric approach to technology, including being aware of how it affects the people involved in the energy company's supply chain. "I think it all ties together."

“Technology is constantly going to move fast — we have to continue to face that.”

Hohman says on the energy industry adapting to technology, adding that tech allows for more collaboration — something energy companies should be doing, even if it means collaborating with a competitor.

"What the tech sector has done is actually helped energy industry because they challenged all these norms — diversity of thought, fail and fail fast — you don't use that language in the energy sector."

Thakorlal says, explaining that influences from the tech sector have been crucial. Ultimately, big tech companies are looking to small startups for innovation, and energy companies will be doing more of that as well. "The tech companies have had to learn it's not they who has got the solutions, and the energy sector has learned that too."

“We’ve got a world that wants a change, and does not know and understand what we’ve done.”

Reid says on the topic of the energy industry's role in the future of the sector. "What's missing is the potential of our industry to make a difference."

“The biggest barrier to advancing technology is fear — people not really understanding. Fear is a choice.”

Thakorlal says, adding that fear is a choice companies can make — but shouldn't. Instead, they should maintain their business while simultaneously adopting tech that will be key in the future. "We say in our organization that if you talk about energy transition or digital transformation in our sector, it's not an 'either/or' it's an 'and.' We have to keep doing what we are doing and transition that to what we want the future to be."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston organizations launch collaborative center to boost cancer outcomes

new to HOU

Rice University's new Synthesis X Center officially launched last month to bring together experts in cancer care and chemistry.

The center was born out of what started about seven years ago as informal meetings between Rice chemist Han Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center at the Baylor College of Medicine. The level of collaboration between the two teams has grown significantly over the years, and monthly meetings now draw about 100 participants from across disciplines, fields and Houston-based organizations, according to a statement from Rice.

Researchers at the new SynthX Center will aim to turn fundamental research into clinical applications and make precision adjustments to drug properties and molecules. It will focus on improving cancer outcomes by looking at an array of factors, including prevention and detection, immunotherapies, the use of artificial intelligence to speed drug discovery and development, and several other topics.

"At Rice, we are strong on the fundamental side of research in organic chemistry, chemical biology, bioengineering and nanomaterials,” Xiao says in the statement. “Starting at the laboratory bench, we can synthesize therapeutic molecules and proteins with atom-level precision, offering immense potential for real-world applications at the bedside ... But the clinicians and fundamental researchers don’t have a lot of time to talk and to exchange ideas, so SynthX wants to serve as the bridge and help make these connections.”

SynthX plans to issue its first merit-based seed grants to teams with representatives from Baylor and Rice this month.

With this recognition from Rice, the teams from Xiao's lab and the TMC will also be able to expand and formalize their programs. They will build upon annual retreats, in which investigators can share unpublished findings, and also plan to host a national conference, the first slated for this fall titled "Synthetic Innovations Towards a Cure for Cancer.”

“I am confident that the SynthX Center will be a great resource for both students and faculty who seek to translate discoveries from fundamental chemical research into medical applications that improve people’s lives,” Thomas Killian, dean of the Wiess School of Natural Sciences, says in the release.

Rice announced that it had invested in four other research centers along with SynthX last month. The other centers include the Center for Coastal Futures and Adaptive Resilience, the Center for Environmental Studies, the Center for Latin American and Latinx Studies and the Rice Center for Nanoscale Imaging Sciences.

Earlier this year, Rice also announced its first-ever recipients of its One Small Step Grant program, funded by its Office of Innovation. The program will provide funding to faculty working on "promising projects with commercial potential," according to the website.

Houston physicist scores $15.5M grant for high-energy nuclear physics research

FUTURE OF PHYSICS

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

The Rice team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas. Photo via Rice.edu

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

------

This article originally ran on EnergyCapital.