Houston-based Decisio's virtual care technology has been paired with GE Healthcare and Microsoft technology in a new initiative for hospitals dealing with the COVID-19 outbreak. Photo via decisiohealth.com

Houston-based health tech startup Decisio Health Inc. has been enlisted in the war against the novel coronavirus.

Chicago-based GE Healthcare Inc. has tapped Decisio's AI-powered DECISIOInsight software, which enables health care providers to remotely monitor patients, for an initiative involving Redmond, Washington-based Microsoft Corp. that's designed to help treat COVID-19 patients.

The coronavirus-targeted Mural Virtual Care Solution, which was introduced April 15, marries Decisio's virtual monitoring software with GE Healthcare's telehealth technology and Microsoft's Azure cloud-computing platform. It's designed to offer hospitals a broad view of COVID-19 patients who are hooked up to ventilators in ICUs. This platform merges data from ventilators, patient monitoring systems, electronic health records, labs, and other sources.

This special technology package is a stripped-down version of the Mural Virtual Care Solution, which pairs Decisio's and GE Healthcare's technology to virtually track hospital patients. GE Healthcare invested in Decisio in 2019.

Until January 31, 2021, the Mural coronavirus bundle is being provided at no cost to hospitals. Among the users is Oregon Health & Science University in Portland.

"We're trying to carry as much of the cost burden to make this as sustainable as possible for our hospital partners that we know are hurting economically right now," says Bryan Haardt, CEO of Decisio.

"There has to be a moralistic compass," he adds. "You have to be driven by something more than just profit."

GE Healthcare, which contributed to Decisio's $13 million Series B round in December, was already partnering with the startup on the Mural Virtual Care Solution. Microsoft was brought into the mix to speed up delivery of the platform in response to the coronavirus pandemic.

"This relationship did not exist prior to this initiative," Haardt says. "We all came together and said, 'Guys, we've got to do our part. It is absolutely a moral imperative that we get together.' And we said, 'OK, well, what are the parts?'"

Haardt says this project equips hospitals to adhere to the best standards of care when it comes to treating COVID-19 patients who are relying on ventilators. In a COVID-19 treatment setting, one of the key benefits of the Mural Virtual Care Solution is that a health care clinician can monitor a patient's vital signs and other data without physical contact, he says.

Founded in 2013, Decisio built its virtual health platform using technology licensed from and developed at the University of Texas Health Science Center in Houston. Coupling real-time clinical surveillance with data visualization, the DECISIOInsight software can pinpoint risks and guide clinicians toward better decisions about patient care.

Haardt says Decisio's software aims to reduce the rate of hospital deaths, length of hospital stays, and burden on hospital resources by helping health care providers decrease the severity of hospital-acquired infections, pneumonia, the flu, and other conditions. Baylor St. Luke's Medical Center in Houston is among the customers for Decisio and GE Healthcare's broad-based Mural Virtual Care Solution, which was rolled out last year.

Also, Decisio has teamed up with professional services firm Deloitte to deliver virtual patient monitoring at U.S. Department of Defense hospitals. This technology is being piloted at Brooke Army Medical Center in San Antonio and Naval Medical Center San Diego.

"We look at doctors and nurses as heroes, because they're really good at getting people out of trouble," Haardt says. "And we like to think of our solution as keeping people out of trouble, because if you can keep them out of the trouble, then these heroic, herculean efforts [by doctors and nurses] are not required as much … ."

Haardt explains that Decisio's technology can monitor patient activity and detect patient trends in not just one area of a hospital (such as an ICU) or throughout an entire hospital but across a commonly managed group of hospitals. Those insights help hospitals ensure all of their health care professionals are following the same treatment protocols.

The No. 1 economic detriment to hospitals "is doing things different at all their different facilities," Haardt says. "If you can reduce the variability of care, we know the cost to provide goods and services goes down, and we know the outcomes improve."

Decisio Health Inc. is designing data-driven resources for clinicians and patients using virtual care. Photo via decisiohealth.com

Houston virtual health care company receives investment from GE for its $13M series B

Money moves

A Houston-based health tech company is wrapping up its series B fundraising round with an investment from Chicago-based GE Healthcare.

The fundraising round is in its initial closing, says Gray Hancock, COO Decisio Health Inc., and is expected to close at $13 million. Decisio has previously raised $7 million, according to Crunchbase. The funds will be used for product development, support, and ongoing growth in operations.

"This investment really cements our partnership with GE Healthcare," Hancock tells InnovationMap in an email. "We signed a global distribution agreement with them earlier this year, so the investment is another step forward in our strategic alignment."

GE Healthcare also invested in Massachusetts-based Formlabs, which makes low-cost 3D printers for anatomical models, and U.K.-based CMR Surgical Ltd., which specializes in surgical robotics.

"Healthcare's next chapter will be written in part by emerging technologies like 3D printing, robotic surgery and virtual patient monitoring," says Kieran Murphy, president and CEO of GE Healthcare, in a news release. "That's why we're putting GE Healthcare's innovative engine and resources behind collaborations with these exciting, next generation companies – to help change the way clinicians work and enable more precise patient care."

Decisio is a virtual care monitoring software that was founded in 2013 based on technology licensed from and developed at the University of Texas Health Science Center in Houston. Using real-time clinical surveillance with data visualization, the DECISIOInsight software can identify risk that helps clinicians make better patient care decisions virtually.

"Our theory was that if you can make the clinicians job's easier, and improve the outcomes for the patients then costs will come down," Hancock says. "But the care of the patient comes first. Do that right and the cost savings will follow. We say its 'where outcomes meet income.'"

In 2015, Decisio Health was approved by the Food and Drug Administration class II medical device, which made it the first FDA-cleared web-native software.

For Decisio, the future of health care is virtual, and the company is determined to design the best technology for clinicians and patients alike.

"Virtual Care is the next step beyond traditional telemedicine, which — for many years — was limited to having a teleconference or even just a phone call with a caregiver," Hancock says. "Now we can start sharing real-time clinical data with clinicians wherever they happen to be located."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC names inaugural cohort for unique accelerator with UK

coming to HOU

Sixteen digital health and medical device startups founded in the United Kingdom have been selected for a customized accelerator at the Texas Medical Center's Innovation Factory.

In partnership with Innovate UK, TMCi created the Innovate UK Global Incubator Programme, a new accelerator that supports UK businesses as they build their United States go-to-market plan. The program builds the BioBridge relationship between TMC and the UK that was originally established five years ago.

“The TMC UK BioBridge program was launched with the UK Department for Business and Trade in 2018 to serve as a gateway for advancing life sciences and foster innovation and research between our two countries," says Ashley McPhail, chief external affairs and administration officer for TMC, in a news release. "We saw an opportunity to work with Innovate UK to develop a larger program with the UK after the success of the 11 companies that previously participated in our health tech accelerator."

The 16 companies will participate in the program from June to November. The cohort is expected to arrive in Houston on June 5 and have access to TMCi's facilities, network of mentors and potential clients, funding, potential customers, and curated programing — all while being a unique entry point into the US. The new offering joins three other globally recognized curriculums: Biodesign, Accelerator for Cancer Therapeutics, and Health Tech.

“TMCi nurtures long-term growth, development, and competitiveness to increase startups chances of success and global expansion," says Emily Reiser, associate director of TMC Innovation. "By bringing their novel technologies and exposing them to a curated selection of TMC’s expert network, startups receive support and evaluation to build, scale, and expand in the US market."

Two of the cohort's specialties include cardiovascular and oncology — two of TMC's strongest areas of expertise — with solutions ranging from surgical devices to AI-enabled risk stratification and hospital efficiency.

Innovate UK is the country's national innovation agency dedicated to supporting business-led innovation in all sectors.

“The United Kingdom is fully committed to improving global healthcare through scientific collaboration," says His Majesty’s Consul General in Texas Richard Hyde in the release. "Through the expansion of the TMC UK BioBridge and in partnership with Innovate UK, this programme will help to expose the brightest and best British companies to the world’s largest medical city. Our companies will collaborate and grow as they work to develop cutting edge technology. The partnership between the UK Government and TMC demonstrates that international collaboration can drive both economic growth and improvement to quality of life.”

The 16 companies making up the inaugural cohort are as follows, according to TMC.

  • AINOSTICS aims to revolutionize the treatment and prevention of neurological conditions, such as dementia, by developing innovative AI-enabled solutions that draw novel insights from routinely acquired non-invasive medical scans to deliver accurate diagnosis and outcome prediction, and in turn facilitate personalized care and timely access to disease-modifying treatments for patients.
  • Alvie is a blended human plus AI-enabled digital solution providing personalised pre and rehabilitation coaching and supportive care for cancer and surgery. Alvie's technology combines data profiling, risk-stratification and tailored prescriptions of health and well-being with curated educational content, targeted behaviour change coaching and expert support through chat messaging and virtual consultations.
  • C the Signs™ is a validated AI cancer prediction platform, which can identify patients at risk of cancer at the earliest and most curable stage of the disease. Used by healthcare professionals, C the Signs can identify which tumor type a patient is at risk of and recommend the most appropriate next step in less than 30 seconds. The platform has detected over 10,000 patients with cancer, with over 50 different types of cancer diagnosed, and with a sensitivity of >98% for cancer.
  • At PEP Health, We believe all patients deserve the best care possible. Our cutting-edge machine-learning technology enables healthcare organisations, regulators, and insurers the real-time, actionable insights they need to have a direct and dramatic impact on patient experiences.
  • PreciousMD improves the lives of lung-cancer and other lung-related illnesses patients worldwide by enabling imaging-based diagnostics needed for personalized treatment pathways.
  • Ufonia is an autonomous telemedicine company, we use large language models and voice AI to increase the capacity of clinical professionals.
  • My mhealth offers digital therapeutics for a range of long-term conditions- COPD, Asthma, Diabetes and Heart Disease. Our product has been successfully deployed in the UK and India, with >100,000 users registered to date. Our solutions empower patients to self-manage their conditions, resulting in dramatic improvements in outcomes, as evidenced through multiple clinical trials and real-world evaluations.
  • At Surgery Hero, we offer a clinically backed solution that ensures whole-human support before and after surgery. We help health systems, employers and health plans cut costs without sacrificing quality of care.
  • Panakeia's software platform enables extremely rapid multi-omics profiling in minutes directly from routinely used tissue images without needing wet lab assays.
  • QV Bioelectronics are striving to deliver longer, better quality lives for brain tumour patients. Using their first-of-its-kind implantable electric field therapy device, GRACE, QV will provide effective, focal & continuous treatment without impacting patient quality of life.
  • 52 North is a med-tech company focused on improving health outcomes and health equity by reinventing care pathways. The NeutroCheck® solution is a finger-prick blood test and digital platform built to significantly improve safety and quality of life for cancer patients, by helping to identify at-home those patients who are at risk of the most fatal side-effect of chemotherapy: neutropenic sepsis.
  • Somnus is fulfilling an unmet need in global healthcare by developing real-time, point of care blood propofol monitoring. Its products will improve the care of sedated and anaesthetised patients, save money for hospitals, and facilitate a major reduction in greenhouse gas emissions.
  • ScubaTx is a breakthrough organ transplant preservation company established to solve the global unmet need for cost-efficient and longer-duration organ preservation technology. ScubaTx has developed a simple, small and affordable device which uses Persufflation to extend the preservation of organs.
  • IBEX is on a mission to help people live active, healthy and productive lives by increasing their access to early diagnosis of osteoporosis. The IBEX BH software as medical device delvers routine, automated assessment of fracture risk from routine radiology for earlier detection and more equitable treatment of osteoporosis.
  • NuVision produces products derived from donated human amniotic membrane that are used in ophthalmology to help patients with chronic, traumatic and post-surgical wounds of the eye to be treated earlier and recover more fully and more quickly. The company’s products are also used in the management of dry eye disease, a debilitating conditions that affects around 17m people in the USA.
  • Calon Cardio-Technology is on a mission to improve quality of life for patients with Left Ventricular Assist devices (LVAD) and reduce the common post operative complications associated with these implantable heart pumps. We plan to do this by introducing a completely wireless heart pump system and augment patient follow-up with built-in remote monitoring capabilities.

UH lab using mixed reality to optimize designs for the Moon and Mars

hi, tech

University of Houston researchers and students are bringing multiple realities together to help improve the design process for crewed space missions.

Helmed by Vittorio Netti, a researcher for UH and a space architect, the university has launched an XR Lab within the University of Houston architecture building. The lab allows researchers to combine mixed reality (MR), virtual reality (VR), augmented reality (AR) and extended reality (XR) to "blend the physical and digital worlds" to give designers a better understanding of life in space, according to a release from UH.

In the lab researchers can wear MY space suits and goggles, take a VR space walk, or feel what it's like to float to the International Space Station with the help of XR and a crane.

The area in which the researchers conduct this work is known as the "cage" and was developed during a six-month research and design study of lunar surface architecture sponsored by Boeing, which aimed to learn more about the design of a lunar terrain vehicle and a small lunar habitat.

The work is part of UH's Sasakawa International Center of Space Architecture (SICSA), which is led by Olga Bannova, a research associate professor and director of the space architecture graduate program at UH.

She says work like this will drastically cut down research and development time when designing space structures.

“These technologies should be harnessed to mitigate the dependency on physical prototyping of assets and help optimize the design process, drastically reducing research-and-development time and providing a higher level of immersion,” Bannova said in a statement.

Today the research team is shifting its focus on designing for a Mars landing. In the future, they aim to demonstrate and test the system for habitats designed for both lunar and Martian surfaces. They are also working with Boeing to test designs in microgravity, or zero gravity, which exists inside the International Space Station.

Mixed Reality Raising the Bar for Space Architecture on the Moon and MarsStep into this 'Cage' at the University of Houston where physical and digital worlds are merged, allowing students to see and ...