There's no "I" in team, but getting your coworkers on the same "we" perspective can be tough. Here's why it's important, according to Rice University's research. Pexels

You just got a promotion — along with a brand-new work team whose members barely speak to one another. But first-rate cooperation is essential if you're going to deliver for your client. So you decide to spend a month getting to know each of your workers.

One is competent but bitter, frustrated by years of small mistakes by a colleague, mistakes that add to her own workload. Another, the one making the mistakes, seems so distracted he may as well be working at another company. Others have their own quirks. And to make matters worse, another department is set to merge its employees with your creaky, cranky team in a few months. How are you going to understand all these individuals, much less get them into shape as a unit?

For many managers, training and reading can help provide guidance. Others may hire an outside consultant and resort to team-building activities. But where does that outside expertise — not to mention training and reading — come from? It's based on academic research.

Rice Business professor Utpal Dholakia and colleagues René Algesheimer of the University of Zurich and Richard P. Bagozzi of the University of Michigan are among the scholars updating what we know about the dynamics of group decisions. Starting with classic group behavior theory, the scholars developed a series of sociologically-based models for analyzing small teams.

To better understand the existing shared intentions and attachment between teammates, Dholakia and his colleagues used a novel set of questions to survey 277 teams of computer gamers, each comprised of three people. They ran the survey responses through variations of a classic model called the Key Informant, which depends on the observations of group members about the social relationships inside a group.

Next, the researchers applied a sociological theory called Plural Subject Theory, focused on what's known as "we-attitude." That's exactly what it sounds like: verbally and actively treating an endeavor as a group project.

The core of this theory, the notion that successful teams frequently use collective pronouns when they discuss themselves and cognitively conceive of themselves as "we," has been heavily studied. Groups whose members think in terms of "we" act more cohesively and are measurably more committed to collectively reaching their goal.

To enhance the way these attitudes are measured, Dholakia created multiple variations of a new model. These differ from previous models because they include information not just from a "key informant," but from every member of a group. The researcher asks group members questions about themselves, their impressions of others in the group, their impressions about how others in the group think of each member and impressions about the group as a whole. This longer, more elaborate approach offers fresh insights about a group's shared consciousness — which provides a valuable new research outcome.

The professors found that this revision of classic key informant model generally worked the best of the various group-analysis models they tested — even improving on the original key informant approach. Future researchers, Dholakia notes, should consider the context of the team situation to decide which configuration of members is best to analyze.

So the next time you find yourself nonplussed by a chaotic group dynamic at work, remember you are in time-honored company — and that help is out there. By updating the key informant model, Dholakia and his colleagues have added to the analytical toolbox something that can help whip that team into shape. Whether it's an army of accountants or a network of hospital workers, Dholakia writes, the first step to creating a real team is analyzing which intentions they truly share.

------

This article originally appeared on Rice Business Wisdom.

Utpal Dholakia is the George R. Brown Professor of Marketing at Jones Graduate School of Business at Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”