Othram and the University of Texas M.D. Anderson Cancer Center have teamed up to create a modern forensic sequencing lab program. Getty Images

Houston-area's first-privately held forensic sequencing laboratory has partnered with The University of Texas M.D. Anderson Cancer Center to create an academic program that will provide forensic training to genome scientists that will help them crack previously unsolved criminal cases.

Othram was created in 2018 specifically to apply the power of modern DNA parallel sequences to forensic evidence. Its new academic program partnership is aimed at training Molecular Genetic Technology (MGT) graduate students in the newest laboratory techniques and technology for the recovery and analysis of human DNA from deteriorated or contaminated materials.

"Because this field is so new, there aren't many individuals who are experts in both genomics and forensic science," David Mittelman, CEO and founder of Othram, tells InnovationMap. "We wanted to collaborate with M.D. Anderson who has a great genetic testing program already to help students learn about how to apply current techniques that are being used to solve cases that no one else can solve."

MGT students, who study the role of genetics in medicine, will be able to train with Othram experts using new technological advances such as the ability to harness whole-genome shotgun sequencing for the unique needs that forensic evidence demands like human identification.

"The Texas Medical Center is the best in the world, specifically for genomics training so it seemed like a natural fit," says Mittelman. "Especially since we want to attract and expose students to this new area of forensics as a possible outlet."

The use of new technology is what sets Othram apart, last year they helped solved a 103-year old mystery of a headless torso found in an Idaho cave, using their Forensic-Grade Genome SequencingTM technology. The DNA extraction and sequencing lab at Othram distill the sample DNA down to a sequence, which with the help of computer software, can be analyzed to reconstruct the whole genome of an individual's DNA.

Then the DNA is digitized and matched to other databases such as the FBI's Combined DNA Index System to cross-reference for a DNA match. With Othram's ability to construct whole genomes from previously unusable DNA samples, they can further the search to identify human remains or identify suspects from living relatives.

"There is no one currently leveraging whole genome sequencing right now like Othram," says Mittelman. "There's a whole range of opportunities from taking a look at the whole genome from ancestry to relationship testing and physical trait prediction."

The unique learning experience for MGT students will integrate classroom lectures, laboratory demonstrations, and technological experiences. Mittleman says that the academic program partnership will enable a new generation of forensic genomics scientists to digitize the nation's DNA evidence and solve cold cases.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.