A new, data-intensive technique can create a better profile of a firm and its profit forecast. Photo via Pexels

Earnings summaries are the corporate version of a Magic 8 Ball, something used to forecast future performance and profit. But Rice Business professor Brian Rountree has found that magic has its limits, and that by delving into a few additional areas of interest, investors can get a more accurate prediction of a company's future earnings than current techniques allow.

Plenty of studies analyze how to use performance summaries to calculate a firm's potential and future profits. Building on the abundant literature around this approach, Rountree, working with colleagues Andrew B. Jackson of the UNSW Australia Business School and Marlene Plumlee of the University of Utah, devised a new, additional technique for forecasting profits. By dissecting an assortment of operating details, the researchers discovered, it's possible to create a more precise forecast of a company's financial future.

Rather than replacing prior work on the subject, Rountree's team delved deeper into the significance of details within existing data. Their focus: whether including a firm's market, its overall industry and any unique activity specific to the firm makes for a more reliable profit forecast. Their conclusion: Firms can indeed improve their predictions if they separate returns on net operating assets (RNOA) into separate components and use those figures in their projections.

Normally, firms use market and industry related data to create future profit predictions. For example, a major oil company might use data on market conditions and the overall state of the oil industry to build its profits prediction. The resulting financial literature might be peppered with statements such as, "Like the rest of big oil…" or "The overall market for oil remains soft."

While this type of data is typically used to make projections, Rountree and his colleagues used the market and industry information more formally by creating the equivalent of stock return betas — a statistical measure of risk — for corporate earnings. In addition, they allowed for adding firm-specific information to market and industry information to help forecast earnings.

To conduct their study, Rountree's team used Compustat quarterly data to calculate firm, industry and market RNOAs from 1976 to 2014. Next, they broke these figures down and separated the results into different categories.

Their resulting formula differs from the conventional approach because it doesn't rely on one average set of market and industry-related data for each firm. Instead, it assumes varying factors for each company. The devil is in these details: Calculating specific market, industry and firm-idiosyncratic components improves the chances of forecasting profits correctly.

Correctly breaking down and separating profitability details to plug into the new formula is no small task. Separating company data into just three components requires up to 20 quarters of figures about prior profitability.

Once the information is processed, a researcher must then be vigilant for "noise" — incidental, irrelevant data that can lead to errors. Finally, Rountree warns, the breakdown process may not work as well for forecasting bankruptcy as it does for profits.

Used correctly, however, the technique is a practical new tool. By breaking down profitability into market, industry and firm-specific idiosyncrasies, researchers can improve forecasts strikingly compared to conventional calculations of total RNOAs.

The most accurate profit forecasts in other words, demand more than just a figurative shake of an industry Magic 8 Ball. To find the most reliable information about future earnings, a company instead has to flawlessly juggle years' worth of specific details about their particular firm. But the reward of planning based on a correct forecast can pay for itself.

------

This story originally ran on Rice Business Wisdom. It's based on research by Brian Rountree, an associate professor of accounting at Jones Graduate School of Business at Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.