A new, data-intensive technique can create a better profile of a firm and its profit forecast. Photo via Pexels

Earnings summaries are the corporate version of a Magic 8 Ball, something used to forecast future performance and profit. But Rice Business professor Brian Rountree has found that magic has its limits, and that by delving into a few additional areas of interest, investors can get a more accurate prediction of a company's future earnings than current techniques allow.

Plenty of studies analyze how to use performance summaries to calculate a firm's potential and future profits. Building on the abundant literature around this approach, Rountree, working with colleagues Andrew B. Jackson of the UNSW Australia Business School and Marlene Plumlee of the University of Utah, devised a new, additional technique for forecasting profits. By dissecting an assortment of operating details, the researchers discovered, it's possible to create a more precise forecast of a company's financial future.

Rather than replacing prior work on the subject, Rountree's team delved deeper into the significance of details within existing data. Their focus: whether including a firm's market, its overall industry and any unique activity specific to the firm makes for a more reliable profit forecast. Their conclusion: Firms can indeed improve their predictions if they separate returns on net operating assets (RNOA) into separate components and use those figures in their projections.

Normally, firms use market and industry related data to create future profit predictions. For example, a major oil company might use data on market conditions and the overall state of the oil industry to build its profits prediction. The resulting financial literature might be peppered with statements such as, "Like the rest of big oil…" or "The overall market for oil remains soft."

While this type of data is typically used to make projections, Rountree and his colleagues used the market and industry information more formally by creating the equivalent of stock return betas — a statistical measure of risk — for corporate earnings. In addition, they allowed for adding firm-specific information to market and industry information to help forecast earnings.

To conduct their study, Rountree's team used Compustat quarterly data to calculate firm, industry and market RNOAs from 1976 to 2014. Next, they broke these figures down and separated the results into different categories.

Their resulting formula differs from the conventional approach because it doesn't rely on one average set of market and industry-related data for each firm. Instead, it assumes varying factors for each company. The devil is in these details: Calculating specific market, industry and firm-idiosyncratic components improves the chances of forecasting profits correctly.

Correctly breaking down and separating profitability details to plug into the new formula is no small task. Separating company data into just three components requires up to 20 quarters of figures about prior profitability.

Once the information is processed, a researcher must then be vigilant for "noise" — incidental, irrelevant data that can lead to errors. Finally, Rountree warns, the breakdown process may not work as well for forecasting bankruptcy as it does for profits.

Used correctly, however, the technique is a practical new tool. By breaking down profitability into market, industry and firm-specific idiosyncrasies, researchers can improve forecasts strikingly compared to conventional calculations of total RNOAs.

The most accurate profit forecasts in other words, demand more than just a figurative shake of an industry Magic 8 Ball. To find the most reliable information about future earnings, a company instead has to flawlessly juggle years' worth of specific details about their particular firm. But the reward of planning based on a correct forecast can pay for itself.

------

This story originally ran on Rice Business Wisdom. It's based on research by Brian Rountree, an associate professor of accounting at Jones Graduate School of Business at Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.